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Abstract 

 The local linear stability of forced, stationary long waves produced by topography or 

potential vorticity (PV) sources is examined using a quasigeostrophic barotropic model.  A 

multiple scale analysis yields coupled equations for the background stationary wave and low-

frequency (LF) disturbance field.  Forcing structures for which the LF dynamics are Hamiltonian 

are shown to yield conservation laws that provide necessary conditions for instability and a 

constraint on the LF structures that can develop.  Explicit knowledge of the forcings that produce 

the stationary waves is shown to be crucial to predicting a unique LF field.  Various topographies 

or external PV sources can be chosen to produce stationary waves that differ by asymptotically 

small amounts, yet the LF instabilities that develop can have fundamentally different structures 

and growth rates.  If the stationary wave field is forced solely by topography, LF oscillatory 

modes always emerge.  In contrast, if the stationary wave field is forced solely by PV, two LF 

structures are possible:  oscillatory modes or non-oscillatory envelope modes.  The development 

of the envelope modes within the context of a linear LF theory is novel. 

 An analysis of the complex WKB branch points, which yields an analytical expression 

for the leading order eigenfrequency, shows that the streamwise distribution of absolute 

instability and convective growth is central to understanding and predicting the types of LF 

structures that develop on the forced stationary wave.  The location of the absolute instability 

region with respect to the stationary wave determines whether oscillatory modes or envelope 

modes develop.  In the absence of absolute instability, eastward propagating wave trains 

generated in the far field can amplify via local convective growth in the stationary wave region.  

If the stationary wave region is streamwise symmetric (asymmetric), the local convective growth 

results in a local change in wave energy that is transient (permanent).  
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 1. Introduction  

 Observations of atmospheric low frequency (LF) variability over the Northern 

Hemisphere (NH) show distinct structures in different geographical locations (Kushnir & 

Wallace 1989).  These structures manifest as slowly modulated wave trains over the continents 

and zonally elongated features over the oceans.   We hypothesize that these distinct regional 

structures can be attributed, in part, to the specific way in which the low-pass filtered flow is 

externally forced.   

 In the NH, the external forcing is primarily due to mechanical forcing by the continental 

landmasses and thermal forcing due to longitudinal variations in diabatic heating.  The 

importance of these forcings to the time-mean flow has been recognized since Charney & 

Eliassen’s (1949) seminal work.  Although published more than fifty years ago, their words are 

equally apt today:  “It has for some time been recognized that the quasi-stationary perturbations 

of the atmosphere are caused by geographically fixed perturbing forces, but the exact nature of 

these forces has not been well understood.”  The relevance of Charney and Eliassen’s words 

today revolves around several related and unresolved issues.  One such issue concerns the net 

time-mean diabatic heating, which depends on contributions from land-sea heating contrasts, 

variations in sea-surface temperatures, and longitudinal variations in latent heating, all of which 

can be influenced by and interact with topography (e.g., Held et al. 2002).  Another issue 

concerns the time-mean flow, which contains contributions not only from topography and 

longitudinal variations in diabatic heating, but also from the low-frequency field itself, which 

may originate either from resonant excitation due to remote forcing (e.g., Nathan & Li 1997 and 

references therein) or from the local instability of the forced, time-mean flow (e.g., Simmons et 

al. 1983).  

 The latter issue forms the basis of this study.  In particular, we consider local, linear 

instability as a mechanism for spawning LF disturbances.  In contrast to most previous studies, 

we focus on how the forcing of the background flow can produce distinctly different regional LF 
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structures, structures that are strongly reminiscent of those identified by Kushnir & Wallace 

(1989) over the NH landmasses and oceans.     

 Longitudinal variations in topography and diabatic heating are essential to producing 

realistic representations of the time-mean circulation of the atmosphere and oceans.  Yet 

theoretical studies traditionally delegate the role of the external forcing to one of implicitness, 

wherein a zonally varying background flow is simply specified and its stability to disturbances 

subsequently examined.  Such an approach is often born out of necessity, since the forcing 

structures that contribute to the time-mean flow are complex and difficult to represent, 

particularly in a way that isolates and makes transparent the underlying physics.  Thus, 

specifying the background flow often is the only recourse to make progress in basic 

understanding.  This approach is quite common and has been the cornerstone for a wide body of 

work that has sought to explain the origin of disturbances in the atmosphere and oceans (e.g., 

Pierrehumbert 1984; Kamenkovich & Pedlosky 1994; Li & Nathan 1997; Nathan 1997; Hodyss 

& Nathan 2004b).   

 Rather than specify the zonally varying background flow, we opt instead to specify the 

external forcing and systematically derive an expression for the spatial-temporal evolution of the 

total low-pass filtered flow.  This approach obviates the need to formally specify, a priori, the 

background flow and disturbance fields; these fields fall out naturally from the development.  

Moreover, we are able to identify the distinct roles that the different external forcings impart to 

the local stability and structure of the flow.  Theoretical progress relating external forcings to 

flow stability and structure has been hindered by the considerable mathematical difficulties 

posed by the zonally varying character of the flows.  

 Merkine (1982), Pierrehumbert (1983) and Andrews (1984) are examples of the few 

theoretical studies that have attempted to address how the nature of the forcing may impact the 

dynamics of large-scale geophysical flow.  However, these studies centered mostly on 

disturbance stability rather than on disturbance regional structure.  Although conservation laws 
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have provided a theoretical framework for understanding the broad connection between the 

zonally varying background flow and low frequency instability (e.g., Swanson 2002), they have 

generally been applied to conservative flows, a restrictive condition that is generally not met in 

the real atmosphere.  Moreover, explicit expressions relating growth rate and wave structure to 

the details of the background flow structure have for the most part remained elusive.   

 Apart from the unresolved theoretical issues, there also are several practical issues 

associated with understanding how the detailed nature of the forcings that produce the time-mean 

flow can affect extended-range weather forecasting and predictions of short-term climate 

variability.  These issues hinge largely on the ability to predict the low frequency field.  In 

particular, inaccurate representation of the forcings that contribute to the climatological 

background flow may squelch certain low frequency structures or misrepresent others.  Such 

errors would result in reduced predictability on both intra-seasonal and interannual time scales. 

 With the above theoretical and practical issues in mind, and guided by Kushnir and 

Wallace’s (1989) observational study of atmospheric LF variability, we formulate a simple 

barotropic model that allows us to focus on the physics that connects the stability of forced 

stationary long waves to the local development of LF instabilities.  As we show later, the heart of 

the problem is intimately connected to the type of forcing that produces the stationary wave field 

and the nature of the LF instabilities – absolute or convective - that develop on the flow.   

 The paper is organized as follows.  In §2 we present the model and discuss the physical 

origin of the terms that govern the linear dynamics of the LF disturbance field.  In §3 we draw on 

conservation principles derived from Hamiltonian theory to provide a necessary condition for 

instability and a constraint on the allowable LF structures that can develop on Hamiltonian 

stationary waves.  In §4 we extend the Hamiltonian stability results of §3 to non-Hamiltonian 

flows and demonstrate that two asymptotically similar stationary wave fields, one produced by 

topography and the other by a PV source, can produce qualitatively different LF instabilities.  In 

§5 we carry out a local stability analysis that connects the types of LF structures that emerge 
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with the regional distribution of absolute instability and convective growth.  The concluding 

remarks are given in §6.   

2. Low frequency model 

In contrast to the traditional approach of simply specifying the background flow, we 

specify the total external forcing.  Once the total forcing is specified and partitioned into time-

mean, zonal-mean and zonally varying components, we systematically derive the background 

flow.  The portion of the background flow that arises solely from the time- and zonal-mean 

forcing is chosen such that it does not satisfy the classic Rayleigh inflection point criterion1 for 

instability (e.g., Pedlosky 1987 §7.14).  The portion of the background flow that arises from the 

seasonally and zonally varying forcing will constitute the seasonally and zonally varying 

stationary wave.  The stability of the stationary wave and the characteristics of the LF 

instabilities that develop on it form the basis of our study.  Symbolically, the streamfunction for 

the total LF portion of the flow can be written as,  

 ( ) ( ) ( ) ( ) ( )0 1 1 1

Zonally Forced Stationary Low Frequency
Uniform Flow Wave ( Free ) Wave

x, y,t y y,t x, y,t x, y,tψ = ψ + εψ + ε ψ + εφ%%
144424443 14243 14243

, (2.1) 

where ε is a scaling parameter to be defined later, (x,y) are distances in the zonal and meridional 

directions, and t is time.  The notation in (2.1) is non-conventional in the following sense.  The 

overbar denotes the portion of the flow that arises from the zonal-mean forcing, not the zonal-

mean of the flow.  This distinction is important because the zonally varying portion of the flow, 

denoted by tildes, may also have zonal-mean components.  Upon specifying the external forcing, 

each part of the total flow (2.2) will be systematically derived below.    

A. Model 

 We consider a quasigeostrophic, barotropic model that is centered on a mid-latitude β-

                                                 
1 Background flows that satisfy Rayleigh’s criterion for instability would produce a related evolution equation for 
the LF waves (e.g., Hodyss & Nathan 2004c). 
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plane channel2 of infinite longitudinal (zonal) extent.  The model fluid is bounded above by a 

rigid horizontal lid and below by broad, spatially varying bottom topography.  Large-scale 

diabatic heating is modeled by horizontal variations in an imposed potential vorticity (PV) 

source.  

 The model dynamics are governed by the quasigeostrophic, barotropic vorticity equation, 

which in the presence of topography, an external PV source and frictional (Ekman) damping can 

be written in the non-dimensional form (Pedlosky 1987):  

 ( ) 2,q J q r
t

ψ ψ∂ F+ = − ∇ +
∂

. (2.2) 

In (2.2) ( ), x y yJ A B A B A B= − x  and ; the geostrophic pressure 

(streamfunction) field is ψ(x,y,t), which is related to the zonal and meridional wind fields 

22222 // yx ∂∂+∂∂=∇

u yψ= −∂ ∂  and v xψ= ∂ ∂ , respectively.  The PV is 2
Bq y hψ β∇ + + ; = β  is the non-

dimensional planetary vorticity gradient, and hB=hB BB(x,y) is the localized bottom topography, 

which is assumed to vanish as x→±∞.  The total external PV source is F(x,y,t) and the parameter 

r measures the Ekman damping strength.  

The boundary condition at the channel sidewalls in a zonally infinite channel is 

ψ = ψ 0 y( ) at y = -1,1 (Helfrich & Pedlosky 1995).  In the zonal direction, far from any localized 

forcing, the flow is zonally uniform and bounded such that ( ) (, , , )x y t y tψ ψ∞→ ±∞ =  and 

( ),y tψ ∞ < ∞ .   

B. Low-pass filtering 

 The mathematical development used to obtain the governing equation for the LF wave 

field in (2.1) follows that in Hodyss & Nathan (2004a; HNa).  We employ the analytical 

                                                 
2 Owing to the channel sidewalls, which act as perfect reflectors, the LF waves may be meridionally resonant.  Thus 
the LF wave amplitudes may be larger than they might otherwise be with open boundaries.  However, Magnusdottir 
& Haynes (1999) have shown using a primitive equation model that under some conditions equatorward propagating 
planetary waves may be reflected from the subtropical zero wind line back into middle latitudes.  This lends some 
support to the channel assumption without having to deal with the significantly more complicated meridionally open 
boundary problem.  
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counterpart to low-pass filtering of atmospheric data by introducing the long zonal scale 

1 2X xε=  and slow time scale 3 2T tε= , for which the differential operators transform as 

1 2x Xε∂ ∂ → ∂ ∂  and 3 2t Tε∂ ∂ → ∂ ∂ , where 1ε << .  To balance friction and external forcing 

with dispersion and nonlinearity, we scale the friction parameter as  and the external 

PV forcing as F→ε

rr 2/3ε→

1/2F.   

For ε = 0.1, the ratio of the zonal to meridional scales is y/x ~0.3y/X, which is consistent 

with observed low-frequency motions in the atmosphere (e.g., Hoskins et al. 1983).  For the 

same ε, the period τ0 = O(ε-3/2) ~ 32, which, for characteristic wind and length scales of U* = 15 

ms-1and L* = 1000 km, yields an advective time scale of about one month.   

 The low-pass field (2.1) is obtained by expanding the dependent variables in a 

perturbation series, 

 ( ) ( ) ( ) ( ) 1 2

0

, , , , , , , , , , , , ,n
B n n

n
n nX y T q X y T F X y T h X y q F hψ ε

∞

=

ψ ε⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦∑ . (2.3) 

Substituting (2.3) into (2.2) and equating like orders in ε yield equations governing the 

components of the low-pass flow (2.1).  Upon specifying the external forcings, each part of the 

total flow (2.2) will be systematically derived below.  As in (2.1), we use an overbar to denote 

the portion of the flow that arises from the zonal-mean forcing and a tilde to denote the zonally 

varying portion of the flow.     

 The O(1) zonal-mean flow is determined from a balance between the frictional damping 

and the O(ε1/2) PV source, i.e., ( )yFr oyy 1=− ψ .  The O(ε) zonal-mean flow is the 

inhomogeneous solution to   

 ( )TyFryy ,101 =Λ− ψψ ;   01 =ψ  at y = -1,1,   (2.4a)  

where  

 Λ0 y( ) =
∂Q 0
∂ψ 0

= −
Q 0y

U 0
 (2.4b)  
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is the O(1) refractive index and ( )TyFr ,  is defined in Appendix A.  To ensure that the 

instabilities that emerge are due solely to the imposed external forcing on the system, we restrict 

attention to the class of O(1) zonal flows for which 00 ≥yQ , which ensures stability according to 

the Rayleigh criterion.  For westerly flow 00 ≥yQ  leads to a negative-definite refractive index 

(2.4b).       

 The O(ε) stationary wave is the inhomogeneous solution to  

 ( ) 11
0

101 ,,~1~~ hdXTyXF
Uyy −=Λ− ∫ψψ , (2.5) 

where 0~
1 =ψ  at y = -1,1.  The structure of the stationary wave depends explicitly on the 

structure of the forcings on the right-hand side of (2.5).  The stationary wave vanishes if the 

topography and PV source term balance, i.e., if XhUF 101
~ = .  Because we are focusing on zonally 

localized stationary waves, the PV source, ˜ F , must have zero zonal mean.  In contrast, any 

localized topography will produce a localized stationary wave.  

1

  The O(ε) LF wave field can be written as 

 )(),(),,(~
1 yTXATyX ϕφ = , (2.6) 

where the meridional structure satisfies 

 0 0yyϕ ϕ− Λ = ;    0=ϕ  at y = -1,1.   (2.7) 

Equation (2.7) states that to lowest order the meridional structure of the LF wave field is a free, 

stationary Rossby wave with local meridional wavenumber .   2/1
0Λ

 At O(ε2) the stationary and LF waves interact to yield the LF amplitude equation,  

 
4342143421434214444 34444 21

Source
WaveRossbytyNonlineari

Xn

GrowthLinear

g

SpeedPhaseLinearNet

XpXXXdT TXfAAmATXmATXmAmA ),(~),(),( =++++ , (2.8) 

where 

 ( ) )T,X(m~Tmm ppp += , (2.9a) 
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 )T,X(m~rm gg += . (2.9b) 

The coefficients in (2.8) and (2.9) are defined in Appendix A.  We note that HNa have 

used (2.8) as a model to examine the dynamics of solitary Rossby waves in zonally varying flow.  

They did not examine, however, the linear stability characteristics of (2.8) nor its general 

nonlinear dynamics.  Here we focus on the former by considering the linear, LF dynamics of 

flows that possess both absolute instability and local convective growth.  The detailed analysis of 

the nonlinear, LF dynamics described by (2.8) will be considered in part two to this study.  

  The terms in (2.8) originate from the following terms in the barotropic vorticity equation 

(2.2): 

 U 0 ˜ q X ⇒ m d AXXX , (2.10a) 

 ( ) Xn AAmqJ ⇒~,~φ . (2.10b) 

 ( ) ( )[ ] XppXyX ATXmTmQqU ,~~~
11 +⇒+ φ , (2.10c) 

 ( )ATXmQqV gyXy ,~~~~~
11 ⇒− φ . (2.10d) 

 ( ) f~F~Q~UQ~Q,~JQ~ XT ⇒+−+ψ+ψ+ 22011111  (2.10e) 

Because the LF instabilities that develop on the stationary wave are so intimately 

connected to the coefficients and terms in (2.8-2.10), we review their physical origins.  Different 

though complementary discussions of the coefficients can be found in HNa and Hodyss and 

Nathan (2006).  

 The linear dispersion term (2.10a) and the nonlinear advection term (2.10b) are 

unaffected by the interaction between the stationary and LF waves and thus have constant 

coefficients.  The phase speed modulation term (2.10c) and the local growth rate term (2.10d), 

which both depend on the O(ε) part of the background flow, have spatially and temporally 

varying coefficients that encapsulate the interaction between the stationary and LF waves.  
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Because the LF wave is stationary to the O(1) flow (see eq. 2.7), the LF characteristics of the 

free wave arise due to dispersion (2.10a), the stationary wave (2.10c,d) and nonlinearity (2.10b).       

 The dispersion term (2.10a) can be shown to yield the classic expression for the zonal 

phase speed of a long, low frequency Rossby wave that is propagating on the O(1) zonal-mean 

flow (HNb).  The phase speed modulation term (2.10c) is an O(ε) correction to the dispersion 

term; it involves the same linear advections that yield the classic Rossby phase frequency in the 

dispersion term.  These advections are associated with meridional displacements of fluid parcels 

and, owing to the stabilizing influence of the β-effect, lead to neutral oscillations (Holton 2004, 

pgs. 214-215).  The phase speed modulation term (2.10c) consists of two parts.  The first part, 

which is due to the O(ε) zonal-mean flow, is chosen to cause the LF wave field to propagate 

slowly eastward, i.e., m p > 0 3.  In the troposphere this is a reasonable assumption during 

Northern Hemisphere winter, when the zonal-mean flow is relatively strong and the advection of 

disturbance relative vorticity dominates over the advection of background vorticity.  The second 

part of the phase speed modulation term is due to the O(ε) forced stationary wave.  Depending on 

the detailed nature of the forcing structures that produce the stationary wave, the term 

 may cause the LF wave to propagate eastward [˜ m p X ,T( )AX ( )TXmp ,~ >0] or westward 

[ <0].  Like the phase speed modulation term, the linear growth term (2.10d) involves 

advections; however, the advections that appear in the growth term are associated with 

longitudinal displacements of fluid parcels.  As shown later, these displacements result in either 

growth or decay of the disturbance field.  The connection between longitudinal parcel 

displacements and disturbance growth is consistent with earlier work on non-zonal flows where 

it has been shown that fluid trajectories with a longitudinal component are less susceptible to the 

( TXmp ,~ )

                                                 
3  The disturbance evolution when m p < 0 leads to other interesting dynamics, including Rossby wave tunneling. 
This problem will be examined in a sequel to this work. 
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stabilizing influence of the β-effect and thus may be energy releasing (e.g., Pedlosky 1987, pgs. 

567-574).   

   The Rossby wave source  in (2.8) depends on both the O(ε) stationary wave and 

the O(ε

˜ f (X ,T )

2) external forcing fields; the O(ε) forcing fields contribute to  through their 

nonlinear interaction [see Appendix A, eq. (A5)].  For linearized waves,  would simply 

produce a forced solution to (2.8) and thus would have no effect on the linear stability problem 

considered here. Therefore, we hereafter set  = 0, such that the stability is controlled 

solely by the stationary wave’s modulations as measured by 

˜ f (X ,T )

˜ f (X ,T )

˜ f (X ,T )

˜ m p(X ,T ) and ˜ m g(X ,T ).   

3. Conservation properties 

In this section we focus on the Hamiltonian dynamics of the linearized LF evolution 

equation (2.8).  Applying Hamiltonian methods4 to (2.8) yields several conservation properties, 

which provide a necessary condition for instability and a constraint on the allowable LF 

structures that can develop on Hamiltonian stationary waves.  Conservations laws for non-

Hamiltonian stationary waves are briefly discussed in Appendix B.   

A. Hamiltonian dynamics 

 The linearized LF amplitude equation (2.8) can be written as a Hamiltonian system of the 

form 

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

−=
A
H

X
AT δ

δ , (3.1) 

provided 

 
∂mp

∂X
− mg = −r −

1
R

∂
∂y

ϕ
U 0

˜ F 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

1

∫ ϕ
U 0

dy = 0. (3.2)

In (3.1) AH δδ  is the functional derivative of the Hamiltonian, H, with respect to the LF 

amplitude, A, where the Hamiltonian is defined as,   
                                                 
4 Reviews of Hamiltonian methods applicable to fluid dynamics can be found in McIntyre & Shepherd (1987), 
Shepherd (1990) and Salmon (1998). 
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  H =
1
2

mpA
2 − md AX

2( dX
−∞

)
∞

∫ . (3.3) 

Because ˜ F  is zonally varying, (3.2) cannot be satisfied for viscous flow (r≠0).  Hamiltonian 

flows must be inviscid (r =0), which is our focus for the remainder of this section.   

1

 For inviscid flow, (3.2) shows that the evolution of the LF wave is Hamiltonian if the 

original asymptotic ordering of the external PV forcing is F<O ( 3 2ε ) or the PV source has a 

specific meridional structure.  For example, if the PV source is symmetric and 0U  is 

meridionally anti-symmetric, then the system is Hamiltonian provided the LF wave is a 

meridional monopole.  In contrast to the PV source, the system is Hamiltonian for any 

topographic forcing. 

1. INTEGRAL INVARIANTS, STABILITY, AND STRUCTURE 

 Equation (3.1) together with Noether’s theorem allows for the identification of several 

integral invariants.  For example, if the Hamiltonian (3.3) is invariant to translations in α, which 

may represent translations in either time or space, a functional Θ that satisfies 

    ⎥⎦
⎤

⎢⎣
⎡ Θ

∂
∂

=
AX

A
δ
δ

α  (3.4) 

will be conserved.  

 The invariance of the Hamiltonian to translations in space (α = X) yields the 

pseudomomentum, P, where 

    Θ = P ≡
1
2

A2dX
−∞

∞

∫  (3.5) 

is conserved if mp varies only with time.  Because the pseudomomentum is positive definite, time 

varying, zonally uniform flows are stable to long, LF Rossby waves.  Thus a necessary condition 

for LF instabilities is the existence of a stationary wave.     

 The invariance of the Hamiltonian to translations in time (α = T) yields conservation of 

pseudoenergy, E, where Θ = E ≡ − H .  In this case mp varies only in space, X.  Because 
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stationary waves produced by topography are clearly independent of time, the LF disturbances 

that develop on topographic stationary waves must conserve pseudoenergy.  In contrast, 

stationary waves produced by PV sources must satisfy two conditions in order to produce LF 

disturbances that conserve pseudoenergy.  The PV sources must be independent of time and have 

structures that satisfy (3.2). 

 Conservation of pseudoenergy provides a constraint on the types of flows that can 

support long, LF instabilities.  Because md < 0 for westerly flow (see Appendix A), a necessary 

condition for the instability of a Hamiltonian stationary wave is that mp(X) change sign 

somewhere in the domain.  Further analysis of this stability condition (see Appendix C) shows 

that although the O(1) parallel background flow we have considered is stable according to the 

Rayleigh criterion, it satisfies a necessary condition for instability due to Arnol’d’s (1965) 

second theorem.   

  In steady, zonally uniform flow, pseudoenergy and pseudomomentum must both vanish 

for instability.  In steady, zonally varying flow, only pseudoenergy must vanish for instability; 

the pseudomomentum is non-zero and modulated by the stationary wave, viz.,  

 21
2

p
T

dm
P

dX

∞

−∞

= − ∫
%

A dX . (3.6) 

Equation (3.6) states that in regions where  increases (decreases), the LF amplitude decreases 

(increases).  This means that a growing mode must be anchored to regions for 

which

˜ m p

d ˜ m p dX < 0.  Moreover, even when the pseudoenergy does not vanish and exponential 

instability is not possible, local convective growth can still occur as a wave travels through the 

zonally varying portion of the flow.  Equation (3.6) states that a wave packet undergoing 

convective growth will have a permanent gain or loss in energy if the stationary wave field 

through which the packet is traveling is asymmetric. 
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 The conservation of pseudomomentum and pseudoenergy can be supplemented with 

additional conservation laws by identifying Casimir invariants, C, that satisfy 

 0=⎥⎦
⎤

⎢⎣
⎡

∂
∂

A
C

X δ
δ , (3.7) 

where the Casimirs are essentially the “homogeneous” solutions to (3.4).  Thus the 

pseudomomentum and pseudoenergy can only be defined to within a Casimir of the system.  

Here we list only the Casimir invariant, “mass,” which is defined as   

  . (3.8)   ∫
∞

∞−

= AdXM

Physically the mass is the zonally uniform portion of the LF disturbance.  Because mass is 

conserved, the zonally integrated amplitude must vanish for unstable waves.  Thus the LF 

instabilities that develop on Hamiltonian flows must have oscillatory structures.   

4. Some explicit results 

  In this section we present some explicit stability results for both Hamiltonian and non-

Hamiltonian background flows that are time-independent and governed by the linearized LF 

equation (2.8).  We demonstrate that two asymptotically similar stationary wave fields, one 

produced by topography and the other by a PV source, can produce qualitatively different LF 

instabilities.  Doing so extends earlier work by Merkine (1982), Pierrehumbert (1983) and 

Andrews (1984), who noted that the nature of the forcing that produces a stationary wave may 

impact its stability.  They did not address, however, the broader issues surrounding the role that 

different external forcings play in producing forced, zonally varying flows that spawn different 

low frequency structures in different regions.   

A. Forcing structures and coefficients 

The two types of stationary waves that we consider are intense jets or split flows that are 

independent of time.  Figure 1a gives a schematic rendering of the broad topography that 
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produces a zonally varying streamfunction field.  A schematic rendering of the coefficients, 

and , that is consistent with this streamfunction field also is shown.     pm gm

  The zonally localized, O(ε) topography is chosen as  

 ( ) ( ) ( )XyyXh ΖΜ=,1 , (4.1) 

where  

 ( )
( )
( )

1 01
2 1 0

h

h

tanh X X , X ,
X

tanh X X , X .

⎧ + + ≤⎪Ζ = ⎨
− +⎪⎩ >

 (4.2) 

In (4.2) 2Xh measures the zonal width of the topography.  The zonal structure is chosen to be a 

wide, shallow mount of unit amplitude, which is qualitatively similar to a broad continental 

landmass.  By inserting (4.1) into the forced stationary wave equation (2.5), we obtain 

 ( ) ( ) ( )yXyX ΦΖ=,~
1ψ , (4.3) 

where the meridional structure function, Φ(y), is the particular solution to 

 Φ yy − Λ0Φ = − M, Φ ±1( ) = 0. (4.4) 

We have solved (4.4) for physically relevant topographic forcing and found meridional 

monopole and dipole structures, which are consistent with the observed structures of atmospheric 

LF variability.  To consider the effects of a broad range of forcing structures on the stability of 

the flow, we leave M(y) arbitrary and consider various combinations of and . )(Xm p )(Xmg

 The zonally localized PV source is chosen as  

     ( )
dX
dUyXF Ζ

Μ−= 01 ,~ . (4.5) 

Insertion of (4.5) into (2.5) yields the stationary wave structure (4.3), the same wave structure 

that was produced by the topography.  Yet, as shown below, these two stationary waves, which 

are identical to O(ε) but originate from different forcings, can yield LF instabilities that are 

completely different.     
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 The coefficients (X) and (X) in (2.9), which control the types of LF instabilities that 

develop, depend on the details of how the stationary wave is forced.  This is made clear if the 

stationary wave (4.3) is inserted into the expressions for 

˜ m p ˜ m g

( )Xmp
~  and ( )Xmg

~ , i.e.,    

        ( ) ZNXm pp =~ ,         ( )
dX
dZNXm gg =~ , (4.6a,b) 

where  

  [ ]∫
−

Μ−ΦΛ=
1

1
0

0
1 dy

UR
N yyp

ϕϕαϕ , (4.7a) 

  [ ]∫
−

Μ+ΦΛ=
1

1
0

0
1 dy

UR
N yyg

ϕϕαϕ , (4.7b) 

where α = 0 for topographically forced flow and α = 1 for PV forced flow.  As per the discussion 

of the amplitude coefficients in §2, the constants Np and Ng respectively determine the effects of 

the stationary wave on the linear propagation and local growth of the LF wave field.  For 

stationary waves forced solely by topography, the second term in (4.7a,b) is absent so that 

Np=Ng, a parameter setting for which the flow is Hamiltonian, whereas for stationary waves 

forced solely by PV, Np ≠ Ng.  In addition, it can be shown that for meridionally uniform O(1) 

flow (4.7a) and (4.7b) are always related by 2Np = Ng.  As shown below, differences between Np 

and Ng control the differences in the types of LF instabilities that develop on topographic or PV 

forced stationary waves.  

B. Oscillatory modes versus envelope modes 

The LF instabilities that develop on various forced stationary waves are obtained by 

numerically solving the linearized form of (2.8) using a pseudo-spectral method with the 3rd 

order Adams-Bashforth scheme in time.  The spectral expansion is truncated at 128 Fourier 

modes.  Periodic and non-periodic conditions were imposed at the upstream and downstream 

boundaries with no significant difference in the numerical results.  The numerical results 
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presented below are based on the non-periodic conditions, which we model by imposing a 

damping region at the upstream and downstream boundaries.  The initial condition is small 

amplitude random noise and the flow is assumed inviscid.  The model is integrated forward in 

time until the most unstable mode dominates the solution.   

To ease comparison with the WKB analysis to be presented in Section 5, we define a 

scaling parameter δ, such that m d = −δ 3 , m p = δ , ( ) dXdNXm gg /~ Ζ=  and ( ) Ζ== ppp nZNXm δ~ , 

where np is introduced to make explicit the dependence of Np on the scaling factor δ.  The WKB 

limit corresponds δ << 1.  For the results to be presented below, the zonal width parameter is Xh 

= 5 and the zonal structure is given by (4.2).  Zonal widths larger and smaller than Xh=5 and a 

variety of zonal structures different from (4.2) were also examined; in all cases there were two 

distinct LF solution basins.  As described below and elaborated upon in §5, one basin is 

characterized by oscillatory structures and the other by envelope modes.   

Figure 2 shows the growth rate in the Np versus Ng plane for δ = 0.2 and δ = 1.  For both 

cases, the stability diagram divides into two distinct regions:  (a) an oscillatory mode region and 

(b) an envelope mode region.  The modal structures for each region are shown in Fig. 3.  The 

oscillatory and envelope mode regions in Fig. 2 are separated by the (dashed) neutral stability 

curve, which is defined in Appendix B.  The growth rate maximum that occurs in the upper 

(lower) right portion of Figs. 2a and 2b corresponds to envelope (oscillatory) modes.  The 

envelope (oscillatory) modes occur for Ng > 0 (< 0).  The envelope modes generally have a much 

greater growth rate than the oscillatory modes. The dashed-dotted line denotes the line in 

parameter space along which the entire family of Hamiltonian stationary waves exists.  By 

plotting the growth rate in the Np-Ng plane we have collapsed the Hamiltonian portion of phase 

space to a single line, a line along which much of the previous work on geophysical flows has 

been focused.  Compared to the PV stationary waves, the Hamiltonian stationary wave 

instabilities are so weak they fall below the resolution of the contours.  Consistent with the 

Hamiltonian results of §3, the instability of the Hamiltonian stationary waves occurs to the left of 
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the vertical line, i.e, where mp changes sign.  In contrast to the Hamiltonian stationary waves, the 

PV stationary waves are unstable even where mp does not change sign.  In addition, recall that 

O(1) flows that are meridionally uniform always satisfy 2Np = Ng, a parameter setting for which 

only oscillatory modes are possible.  This is consistent with previous work (e.g. Merkine 1982).     

Figure 3 shows the structures of the oscillatory and envelope modes for the two values of 

δ used in Fig. 2.  Generally, for both modal structures, as δ increases the disturbance 

wavenumber decreases and the penetration into the downstream far-field increases.  The vertical 

line in each figure, along which mp = 0, corresponds to a divergent group velocity field, an 

important point that is discussed further in the following section.   

5. Local stability analysis 

 The Hamiltonian analysis of §3 provided a necessary condition for instability and a 

constraint on the allowable structures that can develop on Hamiltonian flows.  Section 4, which 

considered both Hamiltonian and non-Hamiltonian flows, provided detailed numerical results 

that underscore the importance of knowing the origin of the stationary wave in order to predict 

the low frequency structures that develop.   

 In this section we carry out a local linear stability analysis of (2.8) for background flow 

that is time-independent and non-Hamiltonian.  The analysis explains the emergence of the 

oscillatory and envelope structures in terms of the regional distribution of absolute instability and 

convective growth.  The formal mathematical procedure that distinguishes absolute instability 

from convective growth is given by Briggs (1964), who examined plasma instabilities in plane 

parallel flows.  The Briggs procedure was first applied in a geophysical context by Merkine 

(1977) for parallel flow and later by Pierrehumbert (1984) and Bar-Sever & Merkine (1988) for 

weakly non-parallel flow.  Much of the more recent work involving the local stability of zonally 

varying flow has centered on the complex linearized Ginzburg-Landau equation (CLGL), which 

is of second order in the zonal coordinate (e.g., Le Dizes et al. 1996; Huerre & Rossi 1998).  In a 

fluid dynamical context, the CLGL provides a relatively simple framework to examine the local 
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stability of flows for which the zonally-uniform far-field satisfies the Rayleigh criterion for 

instability.  In contrast to the CLGL, the linearized LF equation (2.8) is of third order, has real 

coefficients, and is based on a flow for which the zonally-uniform far-field does not satisfy the 

Rayleigh criterion for instability.   

 The response of a zonally varying flow to an initial disturbance field may manifest in one 

of four ways (e.g., Huerre & Rossi 1998):  absolute instability (AI), convective growth (CG), 

neutrality, or stability.  If the initial disturbance excites a growing wave of zero group velocity, 

which consequently grows without bound at every point in space, the flow is said to be 

absolutely unstable.  If the initial disturbance field propagates and grows locally only at fixed 

points in space, decaying or remaining neutral elsewhere, the flow is said to be convectively 

unstable.  If the initial disturbance field neither grows nor decays at all fixed points in space, the 

flow is said to be neutral.  If the initial disturbance field decays at all fixed points in space, the 

flow is said to be stable.     

 The major distinction between AI and CG is that a localized region of AI exhibits 

dynamics that are intrinsic to the system, whereas a localized region of CG only serves as a 

spatial amplifier of remotely forced wave trains.  As shown below, distinct regions along the 

flow may be identified that are absolutely unstable, convectively unstable, neutral or stable.  The 

distribution and zonal extent of these individual regions, which are controlled by the external 

forcing, plays a central role in determining the regional structure of the LF wave.  

A. WKB Analysis    

 In this sub-section, we employ a WKB formalism and derive explicit expressions for the 

growth rates and structures for both the absolutely unstable and convectively unstable 

disturbances.  We focus on inviscid flow in regions of parameter space where the low-frequency 
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wave is weakly dispersive [md = O(δ3)] and slowly propagating [mp(X) = O(δ)]5.  In order to 

ensure instability at lowest order we assume mg(X) = O(1).   

 For this parameter setting, we search for normal-mode solutions to (2.8) of the form 

 A X ,T( ) = a X( )exp − i ω0 +δω1 + ...( )T[ ]+ c.c., (5.1) 

where ω is the complex frequency.  The spatially modulated amplitude is expanded in WKB 

form (Bender & Orszag, 1978),   

 
  
a(X ) = exp S0(X;ω0 )

δ
+ S1(X;ω1) + L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (5.2) 

where the Sj(X;ωj) control the amplitude and phase modulation of the wave.  Insertion of (5.1) 

and (5.2) into (2.8) yields, for the first two terms in (5.2),  
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 where  

  (5.4) ( ) 0;, 00
3
000 =++−≡ gpd imkmkmXkD ωω

is the dispersion relation6 and  

  (5.5) 2
03 kmmc dpg −=

is the corresponding lowest order group velocity.  The local zonal wavenumber, k0(X,ω0), is 

defined by S0X(X;ω0)=ik0(X;ω0).   

1) ABSOLUTE INSTABILITY 

 In the WKB framework, a necessary condition for normal mode instability is the 

existence of a localized region of absolute instability, where the maximum absolute growth rate 

serves as the upper bound on the normal mode growth rate (Pierrehumbert 1984; Huerre & Rossi 

                                                 
5 This parameter setting is tantamount to assuming that the stationary wave is slowly varying, which could also be 
made explicit by setting χ=δX, where δ<<1 measures the ratio of the scale of the LF wave to that of the stationary 
wave. 
6  Because we have assumed that the stationary wave is weak, the dispersion relation (5.4) is considerably simpler 
than in previous work (e.g., Pierrehumbert 1984). 
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1998).  For a given zonally varying flow, the procedure for determining the normal mode 

frequency pivots on determining the branch points in the complex X plane.  If the branch points 

are off the real axis, the one closest to the real axis is the most physically relevant (Boyd 1999).     

 We begin with the dispersion relation (5.4), which is a cubic polynomial in k0(X;ω0), 

where k0, X and ω each may be complex.  Each of the three roots for k0(X;ω0) corresponds to a 

branch of the dispersion relation, with each branch yielding a LF wave of the form (5.3).  

Because the forced stationary wave decays to zero as Xr→±∞, two conditions follow:  (1) the LF 

wave must also decay to zero as Xr→±∞ and (2) a single branch of the dispersion relation must 

satisfy .  In addition, for the LF wave to decay to zero as X( ) (0 0 0k ; k ;−∞ ω = ∞ ω )0 r→±∞, we 

require that the Im(k0) be positive as Xr→∞ and negative as Xr→-∞.  Assume two branches of 

(5.4) cross at the branch point, X0, such that 

  k0
L X0;ω0( ) = k0

R X0;ω0( ), (5.8) 

where the branch point may be complex.  Here  is the branch to the left of Xk0
L

0, where Im( ) < 

0 as , and  is the branch to the right of X

k0
L

−∞→rX k0
R

0, where Im( ) > 0 as .  Clearly, a 

single (root) branch of the dispersion relation cannot simultaneously satisfy both the upstream 

and downstream boundary conditions; therefore branch switching must occur somewhere in the 

domain.  A branch point is classified as a square root branch point if two of the roots of the 

dispersion relation (5.4) coalesce at the branch point.  Similarly, a branch point is classified as a 

cube root branch point if three of the roots of the dispersion relation coalesce at the branch point.   

k0
R ∞→rX

 Given (5.8) it follows that the dispersion relation has a complex saddle point such that 

 .0)(0 0
0

0

=⇒=
=

Xc
k
D

g
XX

∂
∂  (5.9) 

Therefore, branch points correspond to those points along the flow where the complex group 

velocity vanishes. 
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 The differential of the dispersion relation (5.4) and the group velocity relation (5.9) 

together yield a formula that defines the position of the branch point.  The differential of (5.4) 

can be written as 

    dD
dX

=
∂D
∂X

+
∂D
∂k0

∂k0

∂X
= 0 .  (5.10) 

Applying (5.10) at the branch point and using (5.9) yields  

  ∂D
∂X X = X 0

= 0, (5.11) 

which, when combined with (5.4), yields the local zonal wavenumber at the branch point, viz.,  

  k0 X0 ,ω0( ) = i
dmg dX
dmp dX

. (5.12) 

 Using (5.12) in (5.9) yields an equation that defines the locations of the branch points, 

viz., 

  Fbr X0( ) = mp

dmp

dX
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 3md

dmg

dX
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= 0. (5.13)  

 Using (5.12) and (5.13) and evaluating (5.4) at the branch point yields the leading order 

approximation to the normal mode frequency: 
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 Figure 4 shows Fbr and the branch points for Ng=-2 (oscillatory mode), Np= -2 (Fig 4a) 

and Np= -3 (Fig 4b).  In Fig. 4a the branch points are on the real axis, where the right one is a 

cube root branch point and the left one is a square root branch point.  For both branch points, the 

Re(ω0) = 0 and the Im(ω0) = 1.0.  The left branch point, however, does not satisfy (5.8) [i.e., 

neither of the two branches that pinch at the branch point vanish as ] and is thus 

neglected.  Figure 4b shows a pair of square root branch points that are located symmetrically 

about the X

−∞→rX

r axis.  In this case the branch points are associated with equal growth rates Im(ω0) = 
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0.92 but different frequencies; Re(ω0) = -0.095 for the one where Xi > 0 and Re(ω0) = 0.095 for 

the one where Xi < 0.  Because these two branch points are equally dominant, they must be 

linearly superposed to represent the normal mode instability.  Linearly superposing two waves 

with equal and opposite real frequency leads to a standing oscillation, which is confirmed by the 

numerical solutions of §4.  The branch point configurations described here are consistent with Le 

Dizes et al.’s (1996) characterization of the instabilities in the complex Ginzburg-Landau 

equation; specifically, we find instabilities associated with one double branch point on the real 

axis or two single branch points off the real axis which are connected by a common stokes line. 

 Our numerical results show that irrespective of whether the branch points are real or 

complex, only two structures emerge – oscillatory modes or envelope modes.  Thus for ease of 

discussion, we focus on the conceptually simpler case of real branch points and consider the cube 

root branch point shown in Fig 4a.                  

 The real branch point on the right in Fig. 4a can be shown to satisfy the three conditions 

for a cube root branch point: (1) D k0 ,ω 0;X0( ) 2) /=0, ( 0 0=∂∂ kD 3) , and ( 02
0

2 kD ∂∂  

& Orszag 1978, §7.5).  The existence of a cube root branch point, however, makes choosing the 

appropriate branch of the solution ambiguous.  To remove the ambiguity, the standard procedure 

is to introduce some additional physics that has been omitted from the dispersion relation (5.4).  

Here we add a small amount of nonlinearity.  Before doing so, however, consider first the 

dispersion relation (5.4), which is based on the linearized form of (2.8).  At the branch point the 

dispersion relation yields, for m

=  (Bender

p = 0 and ω0 = -img, a condition on the wavenumber, i.e., 3
0k  = 0.  

Thus the three roots for k0 coalesce at the branch point when mp=0.  This suggests that 

introducing some additional physics that leads to propagation across the branch point will 

eliminate the ambiguity.  Now consider the nonlinear equation (2.8), where we note that the 

nonlinear term is simply an amplitude dependent phase speed term.  Combining mpAX with 

mnAAX in (2.8) yields a modified phase speed modulation term, mpAX → (mp + mnA)AX, which is 

non-zero at the branch point.  Thus the amplitude of the wave, no matter how small, yields a 
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non-vanishing phase speed modulation term at the branch point.  Consequently, the cube root 

branch point does not survive in the presence of small, yet finite amplitude waves.  We in fact 

obtain a square root branch point, meaning only two roots coalesce at the branch point − these 

two roots are then matched to form the leading order WKB approximation. 

 Figure 5 shows the leading order WKB solution for the most unstable normal mode that 

develops on the PV forced stationary wave of Section 4A.  The parameters are:  δ = 0.2, Np = -2, 

Ng = 2 (envelope mode), Ng = −2 (oscillatory mode).  Both modes have the same lowest order 

frequency, ω0 = i.  Figure 6 presents a comparison between the WKB and numerically 

determined estimates of the growth rate as a function of δ.  Note that in the limit as δ → 0 the 

growth rate asymptotes to the WKB estimate. 

 Comparison of the WKB solutions in Fig. 5 with the numerically determined solutions in 

Fig. 3 show only small phase differences between the modes.  These small phase differences 

would be reduced by including the next order term, S1(X,ω1), in the WKB solution (5.3).  The 

calculation of S1(X,ω1) is in principle straightforward though in practice quite lengthy.  In 

particular, S1(X,ω1) is singular at the branch point, which invalidates the expansion (5.2).  The 

singular perturbation problem must then be solved by matching the (inner) solution in the 

vicinity of the branch point with the (outer) solution far from the branch point.  Matching the 

inner and outer solutions yields the frequency correction ω1 and thus S1(X,ω1) (see, for example, 

Bar-Sever & Merkine 1988).  Fortunately, S1(X,ω1) does not have to be calculated to capture the 

basic physics of the normal mode instabilities; the leading order WKB solution is adequate.  

Pierrehumbert (1984) noted, within the context of baroclinic instability, that a conceptual 

picture of the normal mode instabilities can be formed from the perspective of absolute 

instability, whereby a branch point is associated with a wave source.  This picture, which carries 

over to the barotropic, forced wave problem considered here, hinges on the following.  

Emanating from a branch point are two waves, each associated with a different branch of the 

dispersion relation (5.4).  One branch, , is associated with a wave that propagates to the right k0
R
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and vanishes as Xr → ∞.  The other branch, , is associated with a wave that propagates to the 

left and vanishes as X

k0
L

r → −∞.  This conceptual picture is consistent with Fig. 5, where a 

divergent group velocity field exists at the branch point.  

2) CONVECTIVE GROWTH      

 To determine regions of convective growth, we check each point in X for a ray with real 

wavenumber along which a traveling wave has positive growth rate.  If such a point exists and 

the flow is absolutely stable there, we label that point in the flow as convectively unstable.   

 We define a ray at the position, Xc, moving at the speed, V, such that c .  From 

(5.5) we see that m

g Xc( ) = V

p<cg for real, non-zero wavenumber, defined by  ( ) dpc mVmXk 3/)(0 −±= . 

Using this expression for , the dispersion relation (5.4) yields the frequency for the wave 

propagating along the ray: 

( cXk0 )

  ω0 Xc( ) =
1
3

k0 Xc( ) 2mp +V[ ]− img .  (5.15) 

Because k0(Xc) is real, (5.15) shows that the spatial distribution of convective growth follows the 

spatial distribution of mg(X) = )(~ Xmr g+ .  For the idealized stationary waves of §4, which are 

symmetric about X = 0, an incoming wave train convectively grows where mg < 0 and 

convectively decays where mg > 0.  

Gaster (1962) has shown that in the limit of weak growth rate the local convective growth 

can be interpreted as either local temporal growth or as local spatial growth, with the respective 

growth rates related by the Gaster transformation ω0i ≈ −k0icgr.  We have verified that this 

transformation holds for the convectively unstable waves in this model.  The transformation does 

not hold for the absolute instabilities because cg = 0 at the branch point. Using the Gaster 

transformation, the net convective growth, G, of a wave train propagating in from infinity is 

given at a position, X, by 

G(X ) = exp −
1
δ

k0idX '
−∞

X

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ exp 1

δ
ω0i

cgr

dX '
−∞

X

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  .   (5.16) 
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Equation (5.16) shows that slowly propagating wave trains undergo the largest convective 

growth.  Because ω0i = -mg the structure of the stationary wave, as manifest through its 

ay exhibit distinct differences.  For 

exampl

e parameters are: δ = 0.2, Np = 2, Ng = ± 0.4.  In the upstream 

far-fiel

por instability 

and con

re associated with complex wavenumber and real frequency (Huerre & 

Rossi 1998 and references therein).  Consider the algebraic dispersion relation 

meridional wind distribution, strongly influences the resulting convective growth.  The degree of 

asymmetry of the stationary wave about X = 0 determines the amount of energy an incoming 

wave train gains or loses upon exiting the stationary wave region.  Ekman damping (r ≠ 0) 

introduces an asymmetry in mg, leading to a net loss of energy as a wave train propagates 

through the stationary wave region.   

Depending on the type of streamwise boundary condition that is imposed, the convective 

growth induced by an asymmetric stationary wave m

e, radiation boundary conditions will lead to a finite amount of convective growth as the 

wave traverses the stationary wave region (see 5.16).  In contrast, periodic boundary conditions 

will lead to continual convective growth as the wave periodically enters and exits the stationary 

wave region.  Because the absolute instabilities are non-propagating and strongly localized, only 

convective growth regions can lead to instabilities that require the periodic recycling of energy 

(e.g., Pierrehumbert 1984).            

Figure 7 shows an example of upstream and downstream convective growth in a flow that 

is free of absolutely instability.  Th

d we introduce an eastward propagating wave train with ω0 = 1.  As the wave train 

propagates through the stationary wave, local growth (decay) occurs where mg(X)<0 (mg(X)> 0) .  

B. Regional distribution of absolute instability and convective growth  

In this sub-section we provide a geometric interpretation of the closely related spatial and 

tem al instability theories in order to determine the regional distribution of absolute 

vective growth.   

Temporal branches are associated with complex frequency and real wavenumber, 

whereas spatial branches a

( )XkD ;, 00 ω =0 
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given b

 to a differ

y (5.4). When (5.4) is evaluated for real wavenumber k0, there is a single complex 

frequency ω0 that corresponds to temporal instability for ω0i = -mg > 0.  When (5.4) is evaluated 

for real frequency, there are three wavenumber solutions, each corresponding ent 

spatial branch.  Although one or more of these branches may appear to exhibit spatial growth 

(i.e., for an eastward moving wave –ki > 0), this growth may in fact be spurious (e.g., Briggs 

1964).  To formally determine the physically relevant spatial growth, the initial value problem 

must be solved.  The initial value approach is in principle straightforward but in practice 

technically difficult.  Fortunately, based on early work by Briggs (1964), among others, 

Pierrehumbert (1986) and Huerre & Rossi (1998) have shown that by examining the geometry of 

the spatial branches, the regions of absolute instability and convective growth can easily be 

determined.  The geometric approach hinges on examining, for real frequency, the variations of 

the (complex) spatial branches with variations in a control parameter, say, X.  If a branch crosses 

the ki = 0 axis but does not pinch with another branch, the flow is convectively unstable.  On the 

other hand, if a branch crosses the ki = 0 axis and pinches with another branch, the flow is 

absolutely unstable.   Figure 8 shows the geometry of the spatial branches for four different 

values of X (the control parameter) for the stationary wave that supports the oscillatory mode 

shown in Fig. 3. For each X the branches were obtained by varying the frequency.  Figure 8a 

shows, for X = -∞, where the flow is zonally uniform, the branch geometry for neutral flow - no 

roots cross the ki =0 axis.  In Figure 8b, where X = -6.3, the middle branch approaches but does 

not pinch with the lower branch, which is indicative of convective growth.  In Figure 8c, where X 

= -6.1, the branch that approached the lower branch in Fig. 8b has pinched with the lower branch 

to form two lower branches.  This branch geometry is associated with absolute instability.  It is 

important to note that in Figs. 8b and 8c the branch which is immediately below the ki=0 axis 

never crosses the ki = 0 axis, which means there is no long or short wave cut-off; all real 

wavenumbers have positive temporal growth rate, as verified by (5.15).  Figure 8d shows, for X 

= 0, the geometry of the branches for the transition from absolute growth to absolute decay.  For 

 27



 

this branch geometry, the flow is neutral.  Because the stationary wave that we are considering is 

symmetric about X = 0, in the region X > 0 the branches in Fig. 8a-c are merely mirrored about 

the ki=0 axis.  This mirroring means that the approaching and/or pinching of the branches occurs 

above the ki=0 axis.  Thus in the X > 0 region the geometry of the spatial branches can be shown 

to correspond to spatial decay and thus temporal decay; the flow is stable for X > 0.   

Applying the aforementioned procedure to determine the regional branch geometries of 

the four stationary waves above produces Fig. 9.  Figure 9a (9b) is for the stationary wave that 

contains an absolutely unstable region that would give rise to an oscillatory (envelope) mode.  

For the

s of the stationary wave fields depicted in Figs. 9c and 9d, the local growth 

charact

aves has been examined 

del.  By drawing on conservation principles derived from 

 oscillatory (envelope) mode the branch point is upstream (downstream) of the stationary 

wave center.  This is the key difference between the oscillatory and envelope modes.  The wave 

source region (i.e., branch point) for the oscillatory mode emits a downstream branch that must 

propagate through a region of absolute instability and then immediately into a region of stability.  

In contrast, the wave source region for the envelope mode emits a downstream branch that 

remains in the absolutely unstable region for only a short time before it enters the convectively 

unstable region.     

Figures 9c and 9d show the distribution of stability properties for stationary waves that 

are convectively unstable but free of absolute instability.  Because the convective growth regions 

are on opposite side

eristics are quite different.  In Fig. 9c (9d) an incoming wave train grows (decays) as it 

propagates into the upstream side of the stationary wave field and decays (grows) as it 

propagates out of the downstream side.  In both cases the wave train returns to its initial 

amplitude because the stationary wave field is symmetric about X = 0.   

6. Concluding remarks  

 The role of topography and potential vorticity sources in controlling the local linear 

stability of stationary long waves to long, low frequency (LF) Rossby w

using a quasigeostrophic barotropic mo
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H onian theory, numerical results obtained from a set of systematically derived LF flow 

equations, and a local WKB analysis of absolute instability and convective growth, we have 

derived explicit stability criteria and constraints on the LF structures that can develop on 

stationary long waves. 

 The LF evolution equation (2.8) pivots on a background flow which, in the absence of 

stationary waves, is stable according to the classic Rayleigh criterion.  Although the O(1) 

parallel background flo

amilt

w is “Rayleigh stable,” we show that it satisfies a necessary condition for 

ntial vorticity (PV) sources can be chosen that produce stationary waves that 

omomentum and “mass” are derived that yield necessary conditions for 

instability and constraints on the allowable LF structures that can develop on forced stationary 

instability that is related to Arnol’d’s (1965) second theorem for the stability of plane curvilinear 

flow.  We resolve this apparent paradox by showing that any amount of zonal variation in the 

background flow may render the flow unstable to long, LF waves with stationary meridional 

wavenumber.    

 Explicit knowledge of the forcing that produces the stationary waves is shown to be 

crucial to predicting a unique LF field.  Specific examples are given where various topographies 

or external pote

differ by asymptotically small amounts, yet the LF instabilities that emerge may manifest in 

strikingly different ways.  If the stationary wave field is forced solely by topography, LF, 

streamwise oriented wave trains always emerge.  In contrast, if the stationary wave field is 

forced solely by PV, two LF structures are possible:  streamwise elongated envelope modes or 

streamwise oriented wave trains.  To our knowledge, the development of the envelope modes is 

new, and represents a novel means for generating coherent structures within the context of a 

linear, LF theory.    

 The LF dynamics of the model are shown to be Hamiltonian for any topographic forcing 

and for PV forcing having special structure.  For such forcing, conservation laws for 

pseudoenergy, pseud
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waves.  We show, for example, that Hamiltonian LF instabilities cannot arise from time 

variations in the background flow alone, but require streamwise variations in the background 

flow.  When the Hamiltonian LF instabilities do arise, they must have zero-mean in the 

streamwise direction.     

  Analysis of the absolute and convective instability properties of the flow allows us to 

predict the type and location of the low frequency structures that can develop on stationary 

waves.  The problem hinges on identifying, via a WKB analysis, the locations of the complex 

branch points of the flow, which anchor the absolute instability.  If the absolute instability region 

y wave region with the same amplitude that it had 

e-scale feature - the complex branch point 

rived

is on the upstream side of the stationary wave field, LF, streamwise oriented wave trains emerge.  

If the absolute instability region is on the downstream side of the stationary wave field, LF, 

envelope (non-oscillatory) modes emerge.   

  For flows that are free of absolute instabilities, LF wave trains originating in the zonally 

uniform far field can locally amplify via convective growth induced by the streamwise variations 

of the stationary wave.  If the flow is inviscid and the stationary wave is symmetric about a 

longitude, the wave train exits the stationar

when it entered the region.  If the flow is viscous and/or the stationary wave is asymmetric, then 

a wave train entering the stationary wave region will exit the region with different amplitude.  

Factors that can produce asymmetry in the stationary wave include (1) a symmetric PV source or 

asymmetric topography, (2) a non-zonal jet axis produced by non-zonal forcing structures and 

(3) a combination of PV sources and topography.    

 The successful simulation of atmospheric LF variability will depend in part on the 

accurate depiction of the location of the energy source for the LF instability, a point that also has 

been noted by Merkine (1982).  In addition, we have shown here that the instability and structure 

of the LF wave will depend on an extremely fin

de  from the WKB analysis.  Moreover, the amplitude of the LF wave has been shown to be 

controlled by the meridional wind distribution of the underlying stationary wave.  For rapidly 
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growing modes, the branch point must be co-located with the maximum in the temporal growth 

rate.  Thus successful simulation of atmospheric LF variability will depend on the accurate 

representation of the structure of the stationary wave, and consequently on the forcing from 

which the stationary wave originated.   

 The theory developed here should have applicability to a broad-range of atmospheric and 

oceanic phenomena characterized by long, LF features.  For example, the LF structures that 

develop on the stationary wave fields analyzed here are reminiscent of the low-frequency 

structures observed by Kushnir & Wallace (1989) in the Northern Hemisphere troposphere 

ve of disturbance amplitude, 

eanin

as well as two anonymous reviewers, for their insightful comments on several aspects of this work.  D. 

was supported in part by NASA grant LWS04-0025-0108.  

during winter.  They show slowly modulated wave trains over the broad continental landmasses 

and zonally elongated features over the oceans (see their Figs. 5 and 8).  Their “continental 

modes” are similar to the oscillatory modes that emerge from the topographically forced 

stationary waves, while their “oceanic modes” are similar to the envelope modes that emerge 

from the PV forced stationary waves.  Although Kushnir & Wallace suggest that both mode 

types are consistent with remote forcing from the tropics, our theory provides an alternative 

explanation for the generation of continental and oceanic modes.   

 Part 2 to this study will address the nonlinear dynamics of the oscillatory and envelope 

modes discovered here.  There are good reasons to believe that these two distinct modes will 

equilibrate in fundamentally different ways.  For example, for topographic stationary waves, for 

which the flow is Hamiltonian, “mass” is conserved irrespecti

m g the disturbances that emerge must have zero zonal-mean.  Thus the oscillatory modes 

will not alter the zonal-mean flow.  In contrast, because the PV stationary waves do not conserve 

“mass,” alterations to the zonal-mean flow can be expected, even in regions far-removed from 

the external PV forcing.  Moreover, to what extent the linear structures obtained here preserve 

their integrity at finite-amplitude remains to be seen.  

Acknowledgments.  The authors thank Professors Ray Pierrehumbert, John Boyd, and Michael Brown, 

Hodyss was supported by a Rosenstiel Postdoctoral Fellowship from the University of Miami.  T. Nathan 
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Appendix A 
Definition of the Coeffi

 
cients in (2.8) 

 The forcing in (2.4a) is obtained by combining the O(ε) and O(ε2) zonal-mean balances:   
 
 F r y,T( ) = −U 1y y,0( )− Λ0 ψ 1 y,0( )− U 1 −1,T( )− U −1,01( )[ ] y +1( )( )[ ]e−rT  

 

 ∫ ∫ ∫∫
− −

−−
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⎟
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y y T
rrT

T
rrT dydyde

U
Fede

U
Fe

1 1 0 0

2

0 0

2 'ττ ττ , (A1) 

where ψ 1 y,0( ) is the initial zonal-mean structure, U 1 −1,0( ) is the initial boundary zonal wind, and 

U 1 −1,T( ) is the boundary zonal wind at time T.  

The coefficients and inhomogeneous forcing term in (2.8) are partitioned into zonally 

uniform (overbar) and zonally varying (tilde) parts: 

 ∫
−
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1

1

21 dy
R
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where 

 ∫
−
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1
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2
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0 dy
U

Q
R y ϕ . (A6) 
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Equation (A6) is the Rayleigh inflection point integral in the long-wave and low-frequency limit.    

Because we are conside O(1) potential vorticity 

radien

In (A2-A5) the background PV gradients are given by  

 

ring O(1) zonal-mean flows for which the 

g t is positive, R<0.   

 

( )1 1,y yQ y T U= − y , (A7) 

( ) ( )1 1, , 1y yy yQ X y T U h= − −% % , (A8) 

 ( )1 1 1, ,X y XQ X y T% , (A9) y
%

 

V h= +

( )2 , ,XQ X y T%
1 2XX XV h= +% , (A10) 

where the subscripts "1" and "2" denote O(ε) and O(ε2) quantities, respectively. 
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Appendix B 
Dynamics of Non-Hamiltonian Flows  

 
 For arbitrary, time-independent stationary waves the equations for pseudoenergy, 

   

pseudomomentum and mass contain sources and sinks, i.e.,   

ET =
dmp

dX
− mg

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ mpA

2 + md AAXX ]dX , (B1a)   [
−∞

∞

∫

 ∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= dXAm

dX
dm

P g
p

T
22 , (B1b) 

∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= AdXm

dX
dm

M g
p

T . (B1c)  

 Equation (B1b) shows that stationary wave fields satisfying 

 02 =− g
p m

dX
dm

 (B2) 

are stable.  Equation (B2), which defines the neutral stability curve in Fig. 2, is only satisfied for 

stationary waves forced by PV.  

 Equation (B1c) shows that for non-Hamiltonian stationary waves (3.2) is not satisfied.  

Consequently the disturbance has non-zero zonal-mean, meaning envelope modes may emerge 

(see the numerical results in §4 and the WKB results in §5).  Assuming A > 0, growth of the 

disturbance amplitude A will depend strongly on the extent to which it projects onto the region 

where .  Thus, significant growth can be anticipated if the structure of A is 

sim

0)/( >− gp mdXdm

ilar to the structure of gp mdXdm − .  Because the envelope modes will generally project 

more strongly onto the structure of the growth region than the oscillatory modes, it follows that 

the envelope modes will generally have larger growth rates.   
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Appendix C 
Pseudoenergy and Arnol’d’s Second Theorem 

ries:  (1) there 

 simple relationship between the coefficient mp in (2.8) and t

background flow; (2) the invariant of Arnol’d’s (1965) second theorem reduces here to the 

seudoenergy constraint obtained in §3.   

 The first corollary may be proved by appealing to the definition of the refractive index: 

     

 The pseudoenergy-derived stability condition obtained in §3 can be related to Arnol’d’s 

(1965) stability theorem7 for plane curvilinear flow.  Below we prove two corolla

is a he refractive index Λ of the 

p

22 VU
UQVQQ yx

+

−
=

Ψ∂
∂

=Λ , (C.1) 

where Ψ, Q, U, and V, represent, respectively, the background streamfunction, potential vorticity, 

eridional wind fields.  We begin by expanding (C.1) in an asymand zonal and m ptotic series in ε,  

  ...+Λε+Λ=Λ 10  (C.2) 

and use (2.1) to obtain 

   
0

0
0 U

Q y

 

−=Λ , (C.3a) 

1 1 0

0 0

y y

y

Q Q
U U U

Q U
⎡ ⎤+ Λ

Λ = − + +
⎢ ⎥⎣ ⎦

%
% . (C.3b) 

Equatio p

1 1 1 0⎢ ⎥

n (C.3b) allows m  to be written as  

 ∫ ϕΛ−=
1

2
1

1 dy  (C.4) 
−1R

m p

                                                 
7 A lucid exposition of Arnol’d’s theorem can also be found in Pedlosky (1987, §7.17).    
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Because we have shown that a change in ecessary condition for instability, (C.4) 

shows that this is equ

 sign of mp is a n

1Λ .  Because R < 0, stability is asivalent to a change in sign of sured when 

.   

 To prove the second corollary we must relate (C.4) to Arnol’d’s (1965) second theorem. 

We start from the Arnol’d invariant, which for the present model takes the form  

01 ≥Λ

1 2

1

0
2

d E dxdy
∞

−∞ −

⎡ ⎤ζ
+ 

dt
=⎢ ⎥Λ⎣ ⎦

, (C.5) 

where 

∫ ∫

( )2 21
2 x yE = φ + φ% %  is the kinetic energy, yyxx

~~ φ+φ=ζ  is the relative vorticity, and 

( )t,y,x~~ φ=φ

for stability is

 is the disturbance streamfunction.  Equation (C.5) shows that a sufficient condition 

; therefore a necessary condition for instability is0>Λ 0<Λ .   

 Recall from §2, our O(1) background flow is such that 0U >0 and ; it follows that 

.  Therefore, the O(1) parallel background flow is stable according to the Rayleigh 

criterion; yet the same parallel background flow satisfies a necessary condition for instability 

cording to Arnol’d’s second theorem.  We sho

background flow (which is neglected by the Rayleigh criterion) may render the flow unstable to 

long zonal waves with stationary meridional wavenumber.   

x-scale on the 

disturbance field such that 

00 ≥yQ

00 <Λ

ac w below that the zonal variation in the 

Because we are focusing on long, low-frequency waves we impose a long 

1 2x Xε∂ ∂ → ∂ ∂ , insert (C.2) in (C.5), and balance like orders in ε.  

The lowest order balance yields 

 ∫ ∫
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∞− −

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Λ

φ
+φ

1

1 0

2
2 0dXdy
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dt
d yy

y , (C.6)  
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which shows that this integral must vanish for instability.  This integral will vanish for waves 

with stationary meridional wavenumber, i.e., 21
0Λ .  This can be shown by using (2.7) in (C.6) and 

integrating by parts.  Hence, O(1) zonal flows for which are marginally 

able t

tability. Hence, 

dly applicable to geophysical fl

variation.        

  At the next ord

 

00 ≥yQ and 00 <Λ

st o long waves with stationary meridional wavenumber.  Because this flow is marginally 

stable, rather than deeply stable, an O(ε) change to the flow may lead to ins

Rayleigh’s criterion is not broa ows with any amount of zonal 

er we obtain  
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Using (2.7) in (C.7) and integrating by parts allows (C.7) to be written as  

 [ ]∫ ∫    
∞

∞− −

1

1
1dt X

Thus, in agreement with analysis of m

=φ+φΛ 22 0dxdy~~d . (C.8) 

p given above, instability requires that 1Λ  change sign; 

stability is assured when 01 ≥Λ .  Agreement between (C.8) and the Hamiltonian definition (3.3) 

can be shown by using ( ) ( )yT,XA~
ϕ=φ  in (C.8).  In addition, because the pseudomomentum 

constraint in §3 shows that zonally uniform flow is purely stable, (C.8) cannot sh unlessvani  1Λ  

varies in the zonal direction.  Thus flow

ε) non-parallel flow, and this in

eridional wavenumber.         

    

 

s that satisfy the Rayleigh criterion for stability may be 

rendered unstable by the addition of O( stability will take the form 

of a long-wave with stationary m
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Figure Captions 

 1.  Schematic rendering of the topogrFigure aphic landmass that produces a zonally varying 

field ar

separat

vertical line mp changes sign and to the right it does not.   

Figure 3 ry and envelope modes for the two values of δ used in 

Figure lane for Ng=-2 (oscillatory mode), Np= -2 (Fig 

, 

 Figure ost unstable mode that develops on the PV 

mode), N =−2 (oscillatory mode).   

Figure 6. Numerically determined growth rate as a function of δ.  Diamonds indicate values for 

the oscilla s indicate values for the envelope mode in Fig. 5b.  The 

orizontal line denotes the leading order WKB estimate of the growth rate.  Note that the growth 

tes for both the oscillatory and envelope modes asymptote to the WKB estimate as δ → 0. 

Figure 7.  An example of upstream and downstream convective growth in a flow that is free of 

absolutely instability.  The parameters are: δ = 0.2, Np = 2δ, Ng = 0.4 (left column), Ng = -0.4 

(right column).   

Figure 8.  The geometry of the spatial branches for four different values of X for the stationary 

wave that supports the oscillatory mode shown in Fig. 3. 

streamfunction field.  The coefficients pm and gm  that are consistent with this streamfunction 

e also shown.     

Figure 2.  The growth rate in the Np versus Ng plane for δ = 0.2 and δ = 1.0.  The stability 

diagram divides into an oscillatory mode region and an envelope mode region, which are 

ed by the (dashed) neutral stability curve.  The dashed-dotted line denotes the line in 

parameter space for which the topographic stationary waves exist.  To the left of the solid 

.  The structures of the oscillato

Fig. 2.   

 4.  The branch points in the complex X p

4a) and Np= -3 (Fig 4b) are denoted by the circled “+”.  The contours denote the function Fbr

which monotonically decreases towards the branch points.  

 5.  The leading order WKB solution for the m

forced stationary wave of Section 4C.  The parameters are:  δ = 0.2, Np =-2δ, Ng=2 (envelope 

g

tory mode in Fig. 5a; x’

h

ra
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Figure 9.  The regional distribution ity and convective growth for four 

he na

ise to an oscillatory (envelope) mode.  Figure 9c (9d) is for an incoming 

 of absolute instabil

different stationary waves.  The vertical solid lines denote the boundaries separating the various 

stability regions.  Figure 9a (9b) is for t  statio ry wave that contains an absolutely unstable 

region that would give r

wave train that grows (decays) as it propagates into the upstream side of the stationary wave field 

and decays (grows) as it propagates out of the downstream side.  Also shown in each Fig. is the 

curve of maximum temporal growth rate.  Dashed line denotes location of branch point.  
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