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The local linear stability of forced, stationary long waves produced by topography or
potential vorticity (PV) sources is examined using a quasi-geostrophic barotropic
model. A multiple scale analysis yields coupled equations for the background
stationary wave and low-frequency (LF) disturbance field. Forcing structures for
which the LF dynamics are Hamiltonian are shown to yield conservation laws that
provide necessary conditions for instability and a constraint on the LF structures that
can develop. Explicit knowledge of the forcings that produce the stationary waves is
shown to be crucial to predicting a unique LF field. Various topographies or external
PV sources can be chosen to produce stationary waves that differ by asymptotically
small amounts, yet the LF instabilities that develop can have fundamentally different
structures and growth rates. If the stationary wave field is forced solely by topography,
LF oscillatory modes always emerge. In contrast, if the stationary wave field is forced
solely by PV, two LF structures are possible: oscillatory modes or non-oscillatory
envelope modes. The development of the envelope modes within the context of a
linear LF theory is novel.

An analysis of the complex WKB branch points, which yields an analytical expres-
sion for the leading-order eigenfrequency, shows that the streamwise distribution of
absolute instability and convective growth is central to understanding and predicting
the types of LF structures that develop on the forced stationary wave. The location
of the absolute instability region with respect to the stationary wave determines
whether oscillatory modes or envelope modes develop. In the absence of absolute
instability, eastward propagating wavetrains generated in the far field can amplify via
local convective growth in the stationary wave region. If the stationary wave region
is streamwise symmetric (asymmetric), the local convective growth results in a local
change in wave energy that is transient (permanent).

1. Introduction
Observations of atmospheric low-frequency (LF) variability over the Northern

Hemisphere (NH) show distinct structures in different geographical locations
(Kushnir & Wallace 1989). These structures manifest as slowly modulated wavetrains
over the continents and zonally elongated features over the oceans. We hypothesize
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that these distinct regional structures can be attributed, in part, to the specific way in
which the low-pass filtered flow is externally forced.

In the NH, the external forcing is primarily due to mechanical forcing by the
continental landmasses and thermal forcing due to longitudinal variations in diabatic
heating. The importance of these forcings to the time-mean flow has been recognized
since Charney & Eliassen’s (1949) seminal work. Although published more than fifty
years ago, their words are equally apt today: ‘It has for some time been recognized that
the quasi-stationary perturbations of the atmosphere are caused by geographically
fixed perturbing forces, but the exact nature of these forces has not been well
understood.’ The relevance of Charney & Eliassen’s words today revolves around
several related and unresolved issues. One such issue concerns the net time-mean
diabatic heating, which depends on contributions from land–sea heating contrasts,
variations in sea-surface temperatures, and longitudinal variations in latent heating, all
of which can be influenced by and interact with topography (e.g. Held, Ting & Wang
2002). Another issue concerns the time-mean flow, which contains contributions not
only from topography and longitudinal variations in diabatic heating, but also from
the low-frequency field itself, which may originate either from resonant excitation due
to remote forcing (e.g. Li & Nathan 1997 and references therein) or from the local
instability of the forced time-mean flow (e.g. Simmons, Wallace & Branstater 1983).

The latter issue forms the basis of this study. In particular, we consider local
linear instability as a mechanism for spawning LF disturbances. In contrast to most
previous studies, we focus on how the forcing of the background flow can produce
distinctly different regional LF structures, structures that are strongly reminiscent of
those identified by Kushnir & Wallace (1989) over the NH landmasses and oceans.

Longitudinal (zonal) variations in topography and diabatic heating are essential to
producing realistic representations of the time-mean circulation of the atmosphere and
oceans. Yet theoretical studies traditionally delegate the role of the external forcing to
one of implicitness, wherein a zonally varying background flow is simply specified and
its stability to disturbances subsequently examined. Such an approach is often born out
of necessity, since the forcing structures that contribute to the time-mean flow are com-
plex and difficult to represent, particularly in a way that isolates and makes transparent
the underlying physics. Thus, specifying the background flow is often the only recourse
to make progress in basic understanding. This approach is quite common and has
been the cornerstone for a wide body of work that has sought to explain the origin of
disturbances in the atmosphere and oceans (e.g. Pierrehumbert 1984; Kamenkovich &
Pedlosky 1994; Li & Nathan 1997; Nathan 1997; Hodyss & Nathan 2004b).

Rather than specify the zonally varying background flow, we opt instead to specify
the external forcing and systematically derive an expression for the spatial-temporal
evolution of the total low-pass filtered flow. This approach obviates the need to
formally specify, a priori, the background flow and disturbance fields; these fields fall
out naturally from the development. Moreover, we are able to identify the distinct
roles that the different external forcings impart to the local stability and structure of
the flow. Theoretical progress relating external forcings to flow stability and structure
has been hindered by the considerable mathematical difficulties posed by the zonally
varying character of the flows.

Merkine (1982), Pierrehumbert (1983) and Andrews (1984) are examples of the
few theoretical studies that have attempted to address how the nature of the forcing
may impact the dynamics of large-scale geophysical flow. However, these studies
centred mostly on disturbance stability rather than on disturbance regional structure.
Although conservation laws have provided a theoretical framework for understanding
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the broad connection between the zonally varying background flow and low-frequency
instability (e.g. Swanson 2002), they have generally been applied to conservative flows,
a restrictive condition that is generally not met in the real atmosphere. Moreover,
explicit expressions relating growth rate and wave structure to the details of the
background flow structure have for the most part remained elusive.

Apart from the unresolved theoretical issues, there also are several practical issues
associated with understanding how the detailed nature of the forcings that produce
the time-mean flow can affect extended-range weather forecasting and predictions
of short-term climate variability. These issues hinge largely on the ability to predict
the low-frequency field. In particular, inaccurate representation of the forcings that
contribute to the climatological background flow may squelch certain low-frequency
structures or misrepresent others. Such errors would result in reduced predictability
on both intra-seasonal and interannual time scales.

With the above theoretical and practical issues in mind, and guided by Kushnir &
Wallace’s (1989) observational study of atmospheric LF variability, we formulate a
simple barotropic model that allows us to focus on the physics that connects the
stability of forced stationary long waves to the local development of LF instabilities.
As we show later, the heart of the problem is intimately connected to the type of
forcing that produces the stationary wave field and the nature of the LF instabilities –
absolute or convective – that develop on the flow.

The paper is organized as follows. In § 2, we present the model and discuss the
physical origin of the terms that govern the linear dynamics of the LF disturbance
field. In § 3, we draw on conservation principles derived from Hamiltonian theory to
provide a necessary condition for instability and a constraint on the allowable LF
structures that can develop on Hamiltonian stationary waves. In § 4, we extend the
Hamiltonian stability results of § 3 to non-Hamiltonian flows and demonstrate that
two asymptotically similar stationary wave fields, one produced by topography and
the other by a PV source, can produce qualitatively different LF instabilities. In § 5,
we carry out a local stability analysis that connects the types of LF structure that
emerge with the regional distribution of absolute instability and convective growth.
The concluding remarks are given in § 6.

2. Low-frequency model
In contrast to the traditional approach of simply specifying the background flow,

we specify the total external forcing. Once the total forcing is specified and partitioned
into time-mean, zonal-mean and zonally varying components, we systematically derive
the background flow. The portion of the background flow that arises solely from the
time- and zonal-mean forcing is chosen such that it does not satisfy the classic
Rayleigh inflection point criterion (background flows that satisfy Rayleigh’s criterion
for instability would produce a related evolution equation for the LF waves, e.g.
Hodyss & Nathan 2004c) for instability (e.g. Pedlosky 1987 § 7.14). The portion of
the background flow that arises from the seasonally and zonally varying forcing will
constitute the seasonally and zonally varying stationary wave. The stability of the
stationary wave and the characteristics of the LF instabilities that develop on it form
the basis of our study. Symbolically, the streamfunction for the total LF portion of
the flow can be written as,

ψ(x, y, t) = ψ̄0(y) + εψ̄1(y, t)︸ ︷︷ ︸
Zonally

uniform flow

+ εψ̃1(x, y, t)︸ ︷︷ ︸
Forced stationary

wave

+ εφ̃1(x, y, t)︸ ︷︷ ︸
Low frequency

(free) wave

, (2.1)
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where ε is a scaling parameter to be defined later, (x, y) are distances in the zonal
and meridional directions, and t is time. The notation in (2.1) is non-conventional
in the following sense. The overbar denotes the portion of the flow that arises from
the zonal-mean forcing, not the zonal-mean of the flow. This distinction is important
because the zonally varying portion of the flow, denoted by tildes, may also have
zonal-mean components. Upon specifying the external forcing, each part of the total
flow (2.2) will be systematically derived below.

2.1. Model

We consider a quasi-geostrophic barotropic model that is centred on a mid-latitude β-
plane channel of infinite longitudinal (zonal) extent. (Owing to the channel sidewalls,
which act as perfect reflectors, the LF waves may be meridionally resonant. Thus
the LF wave amplitudes may be larger than they might otherwise be with open
boundaries. However, Magnusdottir & Haynes (1999) have shown using a primitive
equation model that under some conditions equatorward propagating planetary waves
may be reflected from the subtropical zero wind line back into middle latitudes. This
lends some support to the channel assumption without having to deal with the
significantly more complicated meridionally open boundary problem.) The model
fluid is bounded above by a rigid horizontal lid and below by broad spatially varying
bottom topography. Large-scale diabatic heating is modelled by horizontal variations
in an imposed potential vorticity (PV) source.

The model dynamics are governed by the quasi-geostrophic barotropic vorticity
equation, which in the presence of topography, an external PV source and frictional
(Ekman) damping can be written in the non-dimensional form (Pedlosky 1987):

∂q

∂t
+ J (ψ, q) = −r∇2ψ + F. (2.2)

In (2.2), J (A, B) = AxBy −AyBx and ∇2 = ∂2/∂x2+∂2/∂y2; the geostrophic pressure
(streamfunction) field is ψ(x, y, t), which is related to the zonal and meridional wind
fields u = −∂ψ/∂y and v = ∂ψ/∂x, respectively. The PV is q = ∇2ψ + βy + hB; β

is the non-dimensional planetary vorticity gradient, and hB = hB(x,y) is the localized
bottom topography, which is assumed to vanish as x → ±∞. The total external PV
source is F (x, y, t) and the parameter r measures the Ekman damping strength.

The boundary condition at the channel sidewalls in a zonally infinite channel is
ψ = ψ̄0(y) at y = −1,1 (Helfrich & Pedlosky 1995). In the zonal direction, far
from any localized forcing, the flow is zonally uniform and bounded such that
ψ(x → ±∞, y, t) = ψ∞(y, t) and ψ∞(y, t) < ∞.

2.2. Low-pass filtering

The mathematical development used to obtain the governing equation for the LF
wave field in (2.1) follows that in Hodyss & Nathan (2004a, hereinafter referred to as
HNa). We employ the analytical counterpart to low-pass filtering of atmospheric data
by introducing the long zonal scale X = ε1/2x and slow time scale T = ε3/2t , for which
the differential operators transform as ∂/∂x → ε1/2∂/∂X and ∂/∂t → ε3/2∂/∂T , where
ε � 1. To balance friction and external forcing with dispersion and nonlinearity, we
scale the friction parameter as r → ε3/2r and the external PV forcing as F → ε1/2F .

For ε = 0.1, the ratio of the zonal to meridional scales is y/x ∼ 0.3y/X, which
is consistent with observed low-frequency motions in the atmosphere (e.g. Hoskins,
James & White 1983). For the same ε, the period τ0 = O(ε−3/2) ∼ 32, which, for
characteristic wind and length scales of U ∗ = 15 m s−1 and L∗ = 1000 km, yields an
advective time scale of about one month.
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The low-pass field (2.1) is obtained by expanding the dependent variables in a
perturbation series,

[ψ(X, y, T ), q(X, y, T ), F (X, y, T ), hB(X, y)] =

∞∑
n=0

εn
[
ψn, qn, ε

1/2Fn, hn

]
. (2.3)

Substituting (2.3) into (2.2) and equating like orders in ε yield equations governing
the components of the low-pass flow (2.1). Upon specifying the external forcings, each
part of the total flow (2.2) will be derived systematically below. As in (2.1), we use
an overbar to denote the portion of the flow that arises from the zonal-mean forcing
and a tilde to denote the zonally varying portion of the flow.

The O(1) zonal-mean flow is determined from a balance between the frictional
damping and the O(ε1/2) PV source, i.e. −rψoyy = F̄1 (y). The O(ε) zonal-mean flow
is the inhomogeneous solution to

ψ̄1yy − Λ0ψ̄1 = F̄ r (y, T ) ; ψ̄1 = 0 at y = −1, 1, (2.4a)

where

Λ0(y) =
∂Q̄0

∂ψ̄0

= −Q̄0y

Ū 0

(2.4b)

is the O(1) refractive index and F̄r (y, T ) is defined in Appendix A. To ensure that the
instabilities that emerge are due solely to the imposed external forcing on the system,
we restrict attention to the class of O(1) zonal flows for which Q̄0y � 0, which ensures
stability according to the Rayleigh criterion. For westerly flow, Q̄0y � 0 leads to a
negative-definite refractive index (2.4b).

The O(ε) stationary wave is the inhomogeneous solution to

ψ̃1yy − Λ0ψ̃1 =
1

Ū0

∫
F̃ 1(X, y, T ) dX − h1, (2.5)

where ψ̃1 = 0 at y = −1,1. The structure of the stationary wave depends explicitly
on the structure of the forcings on the right-hand side of (2.5). The stationary wave
vanishes if the topography and PV source term balance, i.e. if F̃ 1 = Ū0h1X . Because we
are focusing on zonally localized stationary waves, the PV source,F̃ 1, must have zero
zonal mean. In contrast, any localized topography will produce a localized stationary
wave.

The O(ε) LF wave field can be written as

φ̃1(X, y, T ) = A(X, T )ϕ(y), (2.6)

where the meridional structure satisfies

ϕyy − Λ0ϕ = 0; ϕ = 0 at y = −1, 1. (2.7)

Equation (2.7) states that, to lowest order, the meridional structure of the LF wave
field is a free, stationary Rossby wave with local meridional wavenumberΛ1/2

0 .
At O(ε2), the stationary and LF waves interact to yield the LF amplitude equation,

AT + m̄dAXXX + mp(X, T )AX︸ ︷︷ ︸
Net linear phase speed

+ mg(X, T )A︸ ︷︷ ︸
Linear growth

+ m̄nAAX︸ ︷︷ ︸
Nonlinearity

= f̃ (X, T )︸ ︷︷ ︸
Rossby wave

source

, (2.8)

where

mp = m̄p (T ) + m̃p(X, T ), (2.9a)

mg = r + m̃g(X, T ). (2.9b)
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The coefficients in (2.8) and (2.9) are defined in Appendix A. We note that HNa have
used (2.8) as a model to examine the dynamics of solitary Rossby waves in zonally
varying flow. They did not examine, however, the linear stability characteristics of
(2.8) nor its general nonlinear dynamics. Here we focus on the former by considering
the linear LF dynamics of flows that possess both absolute instability and local
convective growth. The detailed analysis of the nonlinear LF dynamics described by
(2.8) will be considered in Part 2 to this study.

The terms in (2.8) originate from the following terms in the barotropic vorticity
equation (2.2):

Ū0q̃X ⇒ m̄dAXXX, (2.10a)

J (φ̃, q̃) ⇒ m̄nAAX, (2.10b)

U1q̃X + Q1yφ̃X ⇒ [m̄p(T ) + m̃p(X, T )]AX, (2.10c)

Ṽ1q̃y − Q̃1Xφ̃y ⇒ m̃g(X, T )A, (2.10d)

Q̃1T + J (ψ̄1 + ψ̃1, Q̄1 + Q̃1) − Ū0Q̃2X + F̃ 2 ⇒ f̃ . (2.10e)

Because the LF instabilities that develop on the stationary wave are so intimately
connected to the coefficients and terms in (2.8–2.10), we review their physical origins.
Different though complementary discussions of the coefficients can be found in HNa

and Hodyss & Nathan (2006).
The linear dispersion term (2.10a) and the nonlinear advection term (2.10b) are

unaffected by the interaction between the stationary and LF waves and thus have
constant coefficients. The phase speed modulation term (2.10c) and the local growth
rate term (2.10d), which both depend on the O(ε) part of the background flow, have
spatially and temporally varying coefficients that encapsulate the interaction between
the stationary and LF waves. Because the LF wave is stationary to the O(1) flow (see
(2.7)), the LF characteristics of the free wave arise owing to dispersion (2.10a), the
stationary wave (2.10c,d) and nonlinearity (2.10b).

The dispersion term (2.10a) can be shown to yield the classic expression for the
zonal phase speed of a long low-frequency Rossby wave that is propagating on the
O(1) zonal-mean flow (Hodyss & Nathan 2004b, hereinafter referred to as HNb). The
phase speed modulation term (2.10c) is an O(ε) correction to the dispersion term; it
involves the same linear advections that yield the classic Rossby phase frequency in
the dispersion term. These advections are associated with meridional displacements
of fluid parcels and, owing to the stabilizing influence of the β-effect, lead to neutral
oscillations (Holton 2004, pp. 214–215). The phase speed modulation term (2.10c)
consists of two parts. The first part, which is due to the O(ε) zonal-mean flow, is
chosen to cause the LF wave field to propagate slowly eastward, i.e. m̄p > 0. (The
disturbance evolution when m̄p < 0 leads to other interesting dynamics, including
Rossby wave tunnelling. This problem will be examined in a sequel to this work.) In the
troposphere this is a reasonable assumption during the Northern Hemisphere winter,
when the zonal-mean flow is relatively strong and the advection of disturbance relative
vorticity dominates over the advection of background vorticity. The second part of the
phase speed modulation term is due to the O(ε) forced stationary wave. Depending on
the detailed nature of the forcing structures that produce the stationary wave, the term
m̃p(X, T )AX may cause the LF wave to propagate eastward [m̃p(X, T ) > 0] or west-
ward [m̃p(X, T ) < 0]. Like the phase speed modulation term, the linear growth term
(2.10d) involves advections; however, the advections that appear in the growth term
are associated with longitudinal displacements of fluid parcels. As shown later, these
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displacements result in either growth or decay of the disturbance field. The connection
between longitudinal parcel displacements and disturbance growth is consistent with
earlier work on non-zonal flows where it has been shown that fluid trajectories with a
longitudinal component are less susceptible to the stabilizing influence of the β-effect
and thus may be energy releasing (e.g. Pedlosky 1987, pp. 567–574).

The Rossby wave sourcef̃ (X, T ) in (2.8) depends on both the O(ε) stationary wave
and the O(ε2) external forcing fields; the O(ε) forcing fields contribute tof̃ (X, T )
through their nonlinear interaction (see Appendix A, (A5)). For linearized waves,
f̃ (X, T ) would simply produce a forced solution to (2.8) and thus would have no
effect on the linear stability problem considered here. Therefore, we set f̃ (X, T ) =
0, such that the stability is controlled solely by the stationary wave’s modulations as
measured by m̃p(X, T ) and m̃g(X, T ).

3. Conservation properties
In this section we focus on the Hamiltonian dynamics of the linearized LF evolution

equation (2.8). Applying Hamiltonian methods to (2.8) yields several conservation
properties, which provide a necessary condition for instability and a constraint on
the allowable LF structures that can develop on Hamiltonian stationary waves.
(Reviews of Hamiltonian methods applicable to fluid dynamics can be found in
McIntyre & Shepherd 1987; Shepherd 1990; Salmon 1998.) Conservations laws for
non-Hamiltonian stationary waves are briefly discussed in Appendix B.

3.1. Hamiltonian dynamics

The linearized LF amplitude equation (2.8) can be written as a Hamiltonian system
of the form

AT = − ∂

∂X

[
δH

δA

]
, (3.1)

provided

∂mp

∂X
− mg = −r − 1

R

∫ 1

−1

∂

∂y

(
ϕ

Ū0

F̃1

)
ϕ

Ū0

dy = 0. (3.2)

In (3.1), δH/δA is the functional derivative of the Hamiltonian, H , with respect to
the LF amplitude, A, where the Hamiltonian is defined as,

H = 1
2

∫ ∞

−∞

(
mpA2 − mdA

2
X

)
dX. (3.3)

Because F̃ 1 is zonally varying, (3.2) cannot be satisfied for viscous flow (r 	= 0).
Hamiltonian flows must be inviscid (r = 0), which is our focus for the remainder of
this section.

For inviscid flow, (3.2) shows that the evolution of the LF wave is Hamiltonian if
the original asymptotic ordering of the external PV forcing is F < O(ε3/2) or the PV
source has a specific meridional structure. For example, if the PV source is symmetric
and Ū0 is meridionally antisymmetric, then the system is Hamiltonian provided the
LF wave is a meridional monopole. In contrast to the PV source, the system is
Hamiltonian for any topographic forcing.

3.1.1. Integral invariants, stability and structure

Equation (3.1) together with Noether’s theorem allows for the identification of
several integral invariants. For example, if the Hamiltonian (3.3) is invariant to
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translations in α, which may represent translations in either time or space, a functional
Θ that satisfies

Aα =
∂

∂X

[
δΘ

δA

]
, (3.4)

will be conserved.
The invariance of the Hamiltonian to translations in space (α = X) yields the

pseudomomentum, P , where

Θ = P ≡ 1
2

∫ ∞

−∞
A2 dX (3.5)

is conserved if mp varies only with time. Because the pseudomomentum is positive
definite, time-varying zonally uniform flows are stable to long LF Rossby waves. Thus
a necessary condition for LF instabilities is the existence of a stationary wave.

The invariance of the Hamiltonian to translations in time (α = T ) yields
conservation of pseudoenergy, E, where Θ = E ≡ −H . In this case, mp varies
only in space, X. Because stationary waves produced by topography are clearly
independent of time, the LF disturbances that develop on topographic stationary
waves must conserve pseudoenergy. In contrast, stationary waves produced by PV
sources must satisfy two conditions in order to produce LF disturbances that conserve
pseudoenergy. The PV sources must be independent of time and have structures that
satisfy (3.2).

Conservation of pseudoenergy provides a constraint on the types of flows that can
support long LF instabilities. Because md < 0 for westerly flow (see Appendix A),
a necessary condition for the instability of a Hamiltonian stationary wave is that
mp(X) change sign somewhere in the domain. Further analysis of this stability
condition (see Appendix C) shows that although the O(1) parallel background flow
we have considered is stable according to the Rayleigh criterion, it satisfies a necessary
condition for instability due to Arnol’d’s (1965) second theorem.

In steady zonally uniform flow, pseudoenergy and pseudomomentum must both
vanish for instability. In steady zonally varying flow, only pseudoenergy must vanish
for instability; the pseudomomentum is non-zero and modulated by the stationary
wave, namely,

PT = − 1
2

∫ ∞

−∞

dm̃p

dX
A2 dX. (3.6)

Equation (3.6) states that in regions where m̃p increases (decreases), the LF amplitude
decreases (increases). This means that a growing mode must be anchored to regions
for which dm̃p/dX < 0. Moreover, even when the pseudoenergy does not vanish and
exponential instability is not possible, local convective growth can still occur as a
wave travels through the zonally varying portion of the flow. Equation (3.6) states
that a wave packet undergoing convective growth will have a permanent gain or loss
in amplitude if the stationary wave field through which the packet is travelling is
asymmetric.

The conservation of pseudomomentum and pseudoenergy can be supplemented
with additional conservation laws by identifying Casimir invariants, C, that satisfy

∂

∂X

[
δC

δA

]
= 0, (3.7)

where the Casimirs are essentially the ‘homogeneous’ solutions to (3.4). Thus the
pseudomomentum and pseudoenergy can be defined only to within a Casimir of the
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X

(b)

(a)

Figure 1. (a) Schematic rendering of the topographic landmass that produces a zonally
varying streamfunction field. (b) The coefficients mp (solid) and mg (dashed) that are consistent
with this streamfunction field are also shown.

system. Here we list only the Casimir invariant, ‘mass’, which is defined as

J =

∫ ∞

−∞
A dX. (3.8)

Physically, the mass is the zonally uniform portion of the LF disturbance. Because
mass is conserved, the zonally integrated amplitude must vanish for unstable waves.
Thus the LF instabilities that develop on Hamiltonian flows must have oscillatory
structures.

4. Some explicit results
In this section, we present some explicit stability results for both Hamiltonian

and non-Hamiltonian background flows that are time-independent and governed by
the linearized LF equation (2.8). We demonstrate that two asymptotically similar
stationary wave fields, one produced by topography and the other by a PV source,
can produce qualitatively different LF instabilities. Doing so extends earlier work
by Merkine (1982), Pierrehumbert (1983) and Andrews (1984), who noted that the
nature of the forcing that produces a stationary wave may impact its stability. They
did not address, however, the broader issues surrounding the role that different
external forcings play in producing forced zonally varying flows that spawn different
low-frequency structures in different regions.

4.1. Forcing structures and coefficients

The two types of stationary waves that we consider are intense jets or split flows
that are independent of time. Figure 1(a) gives a schematic rendering of the
broad topography that produces a zonally varying streamfunction field. A schematic
rendering of the coefficients, mp and mg , that is consistent with this streamfunction
field is also shown.

The zonally localized, O(ε) topography is chosen as

h1(X, y) = M(y)Z(X), (4.1)

where

Z(X) = 1
2

{
1 + tanh(X + Xh) (X � 0),

1 − tanh(X + Xh) (X > 0).
(4.2)

In (4.2), 2Xh measures the zonal width of the topography. The zonal structure is
chosen to be a wide shallow mount of unit amplitude, which is qualitatively similar



358 D. Hodyss and T. R. Nathan

to a broad continental landmass. By inserting (4.1) into the forced stationary wave
equation (2.5), we obtain

ψ̃1(X, y) = Z(X)Φ(y), (4.3)

where the meridional structure function, Φ(y), is the particular solution to

Φyy − Λ0Φ = −M, Φ(±1) = 0. (4.4)

We have solved (4.4) for physically relevant topographic forcing and found meridional
monopole and dipole structures, which are consistent with the observed structures
of atmospheric LF variability. To consider the effects of a broad range of forcing
structures on the stability of the flow, we leave M(y) arbitrary and consider various
combinations of mp(X) and mg(X).

The zonally localized PV source is chosen as

F̃ 1(X, y) = −Ū0M
dZ

dX
. (4.5)

Insertion of (4.5) into (2.5) yields the stationary wave structure (4.3), the same wave
structure that was produced by the topography. Yet, as shown below, these two
stationary waves, which are identical to O(ε) but originate from different forcings,
can yield LF instabilities that are completely different.

The coefficients m̃p(X) and m̃g(X) in (2.9), which control the types of LF instabilities
that develop, depend on the details of how the stationary wave is forced. This is made
clear if the stationary wave (4.3) is inserted into the expressions for m̃p(X) and m̃g(X),
i.e.

m̃p (X) = NpZ, m̃g (X) = Ng

dZ

dX
, (4.6a, b)

where

Np =
1

R

∫ 1

−1

[Λ0yΦϕ − αMyϕ]
ϕ

Ū0

dy, (4.7a)

Ng =
1

R

∫ 1

−1

[Λ0yΦϕ + αMϕy]
ϕ

Ū0

dy, (4.7b)

where α = 0 for topographically forced flow and α = 1 for PV forced flow. As in the
discussion of the amplitude coefficients in § 2, the constants Np and Ng , respectively,
determine the effects of the stationary wave on the linear propagation and local
growth of the LF wave field. For stationary waves forced solely by topography, the
second term in (4.7a, b) is absent so that Np = Ng , a parameter setting for which the
flow is Hamiltonian, whereas for stationary waves forced solely by PV, Np 	= Ng . In
addition, it can be shown that for meridionally uniform O(1) flow (4.7a) and (4.7b)
are always related by Np = 2Ng . As shown below, differences between Np and Ng

control the differences in the types of LF instabilities that develop on topographic or
PV forced stationary waves.

4.2. Oscillatory modes versus envelope modes

The LF instabilities that develop on various forced stationary waves are obtained
by numerically solving the linearized form of (2.8) using a pseudospectral method
with the third-order Adams–Bashforth scheme in time. The spectral expansion is
truncated at 128 Fourier modes. Periodic and non-periodic conditions were imposed
at the upstream and downstream boundaries with no significant difference in the
numerical results. The numerical results presented below are based on the non-
periodic conditions, which we model by imposing a damping region at the upstream
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Figure 2. The growth rate in the Np versus Ng plane for (a) δ = 0.2 and (b) δ = 1.0. The
stability diagram divides into an oscillatory mode region and an envelope mode region, which
are separated by the (dashed) neutral stability curve. The dashed-dotted line denotes the line
in parameter space for which the topographic stationary waves exist. To the left of the solid
vertical line mp changes sign and to the right it does not.

and downstream boundaries. The initial condition is small-amplitude random noise
and the flow is assumed inviscid. The model is integrated forward in time until the
most unstable mode dominates the solution.

To ease comparison with the WKB analysis to be presented in § 5, we define a scaling
parameter δ, such that m̄d = −δ3, m̄p = δ, m̃g(X) = NgdZ/dX and m̃p(X) = NpZ =
δnpZ, where np is introduced to make explicit the dependence of Np on the scaling
factor δ. The WKB limit corresponds δ � 1. For the results to be presented below,
the zonal width parameter is Xh = 5 and the zonal structure is given by (4.2). Zonal
widths larger and smaller than Xh = 5 and a variety of zonal structures different from
(4.2) were also examined; in all cases there were two distinct LF solution basins. As
described below and elaborated upon in § 5, one basin is characterized by oscillatory
structures and the other by envelope modes.

Figure 2 shows the growth rate in the Np versus Ng plane for δ = 0.2 and
δ = 1. For both cases, the stability diagram divides into two distinct regions: (a)
an oscillatory mode region and (b) an envelope mode region. The modal structures
for each region are shown in figure 3. The oscillatory and envelope mode regions
in figure 2 are separated by the (dashed) neutral stability curve, which is defined in
Appendix B. The growth rate maximum that occurs in the upper (lower) left portion
of figures 2(a) and 2(b) corresponds to envelope (oscillatory) modes. The envelope
(oscillatory) modes occur for Ng > 0 (<0). The envelope modes generally have a
much greater growth rate than the oscillatory modes. The dashed-dotted line denotes
the line in parameter space along which the entire family of Hamiltonian stationary
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Figure 3. The structures of the (a) oscillatory and (b) envelope modes for the
two values of δ used in figure 2.

waves exists. By plotting the growth rate in the (Np, Ng) plane, we have collapsed the
Hamiltonian portion of phase space to a single line, a line along which much of the
previous work on geophysical flows has been focused. Compared to the PV stationary
waves, the Hamiltonian stationary wave instabilities are so weak that they fall below
the resolution of the contours. Consistent with the Hamiltonian results of § 3, the
instability of the Hamiltonian stationary waves occurs to the left of the vertical line,
i.e. where mp changes sign. In contrast to the Hamiltonian stationary waves, the PV
stationary waves are unstable even where mp does not change sign. In addition, recall
that O(1) flows that are meridionally uniform always satisfy Np = 2Ng , a parameter
setting which is always stable.

Figure 3 shows the structures of the oscillatory and envelope modes for the two
values of δ used in figure 2. Generally, for both modal structures, as δ increases,
the disturbance wavenumber decreases and the penetration into the downstream far
field increases. The vertical line in each figure, along which mp = 0, corresponds to
a divergent group velocity field, an important point that is discussed further in the
following section.

5. Local stability analysis
The Hamiltonian analysis of § 3 provided a necessary condition for instability and

a constraint on the allowable structures that can develop on Hamiltonian flows.
Section 4, which considered both Hamiltonian and non-Hamiltonian flows, provided
detailed numerical results that underscore the importance of knowing the origin of
the stationary wave in order to predict the low-frequency structures that develop.

In this section, we carry out a local linear stability analysis of (2.8) for background
flow that is time-independent and non-Hamiltonian. The analysis explains the
emergence of the oscillatory and envelope structures in terms of the regional
distribution of absolute instability and convective growth. The formal mathematical
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procedure that distinguishes absolute instability from convective growth is given
by Briggs (1964), who examined plasma instabilities in plane parallel flows. The
Briggs procedure was first applied in a geophysical context by Merkine (1977) for
parallel flow and later by Pierrehumbert (1984) and Bar-Sever & Merkine (1988) for
weakly non-parallel flow. Much of the more recent work involving the local stability
of zonally varying flow has centred on the complex linearized Ginzburg–Landau
equation (CLGL), which is of second order in the zonal coordinate (e.g. Le Dizes
et al. 1996; Huerre & Rossi 1998). In a fluid dynamical context, the CLGL provides
a relatively simple framework to examine the local stability of flows for which the
zonally uniform far field satisfies the Rayleigh criterion for instability. In contrast to
the CLGL, the linearized LF equation (2.8) is of third order, has real coefficients,
and is based on a flow for which the zonally uniform far field does not satisfy the
Rayleigh criterion for instability.

The response of a zonally varying flow to an initial disturbance field may manifest
itself in one of four ways (e.g. Huerre & Rossi 1998): absolute instability (AI),
convective growth (CG), neutrality, or stability. If the initial disturbance excites a
growing wave of zero group velocity, which consequently grows without bound at
every point in space, the flow is said to be absolutely unstable. If the initial disturbance
field propagates and grows locally only at fixed points in space, decaying or remaining
neutral elsewhere, the flow is said to be convectively unstable. If the initial disturbance
field neither grows nor decays at all fixed points in space, the flow is said to be neutral.
If the initial disturbance field decays at all fixed points in space, the flow is said to be
stable.

The major distinction between AI and CG is that a localized region of AI exhibits
dynamics that are intrinsic to the system, whereas a localized region of CG only serves
as a spatial amplifier of remotely forced wave trains. As shown below, distinct regions
along the flow may be identified that are absolutely unstable, convectively unstable,
neutral or stable. The distribution and zonal extent of these individual regions, which
are controlled by the external forcing, plays a central role in determining the regional
structure of the LF wave.

5.1. WKB analysis

In this sub-section, we employ a WKB formalism and derive explicit expressions for
the growth rates and structures for both the absolutely unstable and convectively
unstable disturbances. We focus on inviscid flow in regions of parameter space where
the low-frequency wave is weakly dispersive [md = O(δ3)] and slowly propagating
[mp(X) = O(δ)] (this parameter setting is tantamount to assuming that the stationary
wave is slowly varying, which could also be made explicit by setting χ = δX, where
δ � 1 measures the ratio of the scale of the LF wave to that of the stationary wave).
In order to ensure instability at lowest order we assume mg(X) = O(1).

For this parameter setting, we search for normal-mode solutions to (2.8) of the
form

A(X, T ) = a(X) exp[−i(ω0 + δω1 + ...)T ] + c.c., (5.1)

where ω is the complex frequency. The spatially modulated amplitude is expanded in
WKB form (Bender & Orszag 1978),

a(X) = exp

(
S0(X; ω0)

δ
+ S1(X; ω1) + · · ·

)
, (5.2)
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where the Sj (X; ωj ) control the amplitude and phase modulation of the wave. Insertion
of (5.1) and (5.2) into (2.8) yields, for the first two terms in (5.2),

a(X) = exp

(
i

δ

∫ X

k0 dX′ +

∫ X iω1 + 3mdk0k0X′

cg

dX′
)

, (5.3)

where

D(k0, ω0; X) ≡ mdk
3
0 − mpk0 + ω0 + img = 0 (5.4)

is the dispersion relation and

cg = mp − 3mdk
2
0 (5.5)

is the corresponding lowest-order group velocity. (Because we have assumed that the
stationary wave is weak, the dispersion relation (5.4) is considerably simpler than in
previous work (e.g. Pierrehumbert 1984).) The local zonal wavenumber, k0(X, ω0), is
defined by S0X(X; ω0) = ik0(X; ω0).

5.1.1. Absolute instability

In the WKB framework, a necessary condition for normal mode instability is the
existence of a localized region of absolute instability, where the maximum absolute
growth rate serves as the upper bound on the normal mode growth rate (Pierrehumbert
1984; Huerre & Rossi 1998). For a given zonally varying flow, the procedure for
determining the normal mode frequency pivots on determining the branch points in
the complex X-plane. If the branch points are off the real axis, the one closest to the
real axis is the most physically relevant (Boyd 1999).

We begin with the dispersion relation (5.4), which is a cubic polynomial in k0(X;ω0),
where k0, X and ω each may be complex. Each of the three roots for k0(X;ω0)
corresponds to a branch of the dispersion relation, with each branch yielding an LF
wave of the form (5.3). Because the forced stationary wave decays to zero as Xr → ±∞,
two conditions follow: (i) the LF wave must also decay to zero as Xr → ±∞ and
(ii) a single branch of the dispersion relation must satisfy k0(−∞; ω0) = k0(∞; ω0). In
addition, for the LF wave to decay to zero as Xr → ±∞, we require that the Im(k0)
be positive as Xr → ∞ and negative as Xr → −∞. Assume two branches of (5.4)
cross at the branch point, X0, such that

kL
0 (X0; ω0) = kR

0 (X0; ω0) , (5.6)

where the branch point may be complex. Here, kL
0 is the branch to the left of

X0, where Im(kL
0 ) < 0 as Xr → −∞, and kR

0 is the branch to the right of X0,
where Im(kR

0 ) > 0 as Xr → ∞. Clearly, a single (root) branch of the dispersion
relation cannot simultaneously satisfy both the upstream and downstream boundary
conditions; therefore branch switching must occur somewhere in the domain. A
branch point is classified as a square root branch point if two of the roots of the
dispersion relation (5.4) coalesce at the branch point. Similarly, a branch point is
classified as a cube root branch point if three of the roots of the dispersion relation
coalesce at the branch point.

Given (5.6), it follows that the dispersion relation has a complex saddle point such
that

∂D

∂k0

∣∣∣∣
X=X0

= 0 ⇒ cg(X0) = 0. (5.7)

Therefore, branch points correspond to those points along the flow where the complex
group velocity vanishes.
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Figure 4. The branch points in the complex X-plane for Ng = −2 (oscillatory mode), Np = −2
(figure 4a) and Np = −3 (figure 4b) are denoted by the ‘×’. The contours denote the function
Fbr , which monotonically decreases towards the branch points.

The differential of the dispersion relation (5.4) and the group velocity relation (5.7)
together yield a formula that defines the position of the branch point. The differential
of (5.4) can be written as

dD

dX
=

∂D

∂X
+

∂D

∂k0

∂k0

∂X
= 0. (5.8)

Applying (5.8) at the branch point and using (5.7) yields

∂D

∂X

∣∣∣∣
X=X0

= 0, (5.9)

which, when combined with (5.4), yields the local zonal wavenumber at the branch
point, namely,

k0(X0, ω0) = i
dmg/dX

dmp/dX
. (5.10)

Using (5.10) in (5.7) yields an equation that defines the locations of the branch
points, namely,

Fbr (X0) = mp

(
dmp

dX

)2

+ 3md

(
dmg

dX

)2

= 0. (5.11)

Using (5.10) and (5.11) and evaluating (5.4) at the branch point yields the leading-
order approximation to the normal mode frequency:

ω0 = i

(
md

[
dmg/dX

dmp/dX

]3

+ mp

dmg/dX

dmp/dX
− mg

)∣∣∣∣∣
X0

. (5.12)

Figure 4 shows Fbr and the branch points for Ng = −2 (oscillatory mode), Np = −2
(figure 4a) and Np = −3 (figure 4b). In figure 4(a), the branch points are on the
real axis, where the right-hand one is a cube-root branch point and the left-hand
one is a square-root branch point. For both branch points, the Re(ω0) = 0 and the
Im(ω0) = 1.0. The left-hand branch point, however, does not satisfy (5.6) (i.e. neither
of the two branches that pinch at the branch point vanish as Xr → −∞) and is thus
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neglected. Figure 4(b) shows a pair of square-root branch points that are located
symmetrically about the Xr -axis. In this case, the branch points are associated with
equal growth rates Im(ω0) = 0.92 but different frequencies; Re(ω0) = −0.095 for the
one where Xi > 0 and Re(ω0) = 0.095 for the one where Xi < 0. Because these two
branch points are equally dominant, they must be linearly superposed to represent
the normal mode instability. Linearly superposing two waves with equal and opposite
real frequency leads to a standing oscillation, which is confirmed by the numerical
solutions of § 4. The branch-point configurations described here are consistent with
Le Dizes et al.’s (1996) characterization of the instabilities in the complex Ginzburg–
Landau equation; specifically, we find instabilities associated with one double branch
point on the real axis or two single branch points off the real axis which are connected
by a common Stokes line.

Our numerical results show that irrespective of whether the branch points are real
or complex, only two structures emerge – oscillatory modes or envelope modes. Thus
for ease of discussion, we focus on the conceptually simpler case of real branch points
and consider the cube-root branch point shown in figure 4(a).

The real branch point on the right in figure 4(a) can be shown to satisfy the three
conditions for a cube-root branch point: (i) D(k0, ω0; X0) = 0, (ii) ∂D/∂k0 = 0, and
(iii) ∂2D/∂k2

0 = 0 (Bender & Orszag 1978, § 7.5). The existence of a cube-root branch
point, however, makes choosing the appropriate branch of the solution ambiguous.
To remove the ambiguity, the standard procedure is to introduce some additional
physics that has been omitted from the dispersion relation (5.4). Here, we add a small
amount of nonlinearity. Before doing so, however, consider the dispersion relation
(5.4), which is based on the linearized form of (2.8). At the branch point the dispersion
relation yields, for mp = 0 and ω0 = −img , a condition on the wavenumber, i.e. k3

0 = 0.
Thus, the three roots for k0 coalesce at the branch point when mp = 0. This suggests
that introducing some additional physics that leads to propagation across the branch
point will eliminate the ambiguity. Now consider the nonlinear equation (2.8), where
we note that the nonlinear term is simply an amplitude-dependent phase speed term.
Combining mpAX with mnAAX in (2.8) yields a modified phase speed modulation
term, mpAX → (mp + mnA)AX , which is non-zero at the branch point. Thus the
amplitude of the wave, no matter how small, yields a non-vanishing phase speed
modulation term at the branch point. Consequently, the cube-root branch point does
not survive in the presence of small, yet finite amplitude waves. We, in fact, obtain
a square-root branch point, meaning only two roots coalesce at the branch point –
these two roots are then matched to form the leading-order WKB approximation.

Figure 5 shows the leading-order WKB solution for the most unstable normal mode
that develops on the PV forced stationary wave of § 4.1. The parameters are: δ = 0.2,
Np = −2, Ng = 2 (envelope mode), Ng = −2 (oscillatory mode). Both modes have
the same lowest-order frequency, ω0 = i. Figure 6 presents a comparison between the
WKB and numerically determined estimates of the growth rate as a function of δ.
Note that in the limit as δ → 0 the growth rate asymptotes to the WKB estimate.

Comparison of the WKB solutions in figure 5 with the numerically determined
solutions in figure 3 show only small phase differences between the modes. These
small phase differences would be reduced by including the next order term, S1(X,ω1),
in the WKB solution (5.3). The calculation of S1(X,ω1) is in principle straightforward,
although in practice quite lengthy. In particular, S1(X,ω1) is singular at the branch
point, which invalidates the expansion (5.2). The singular perturbation problem must
then be solved by matching the (inner) solution in the vicinity of the branch point
with the (outer) solution far from the branch point. Matching the inner and outer
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Figure 5. The leading-order WKB solution for the most unstable mode that develops on the
PV forced stationary wave of § 4.1. The parameters are: (a) δ = 0.2, Np = −2δ, Ng = −2
(oscillatory mode), (b) Ng = 2 (envelope mode).

solutions yields the frequency correction ω1 and thus S1(X,ω1) (see, for example,
Bar-Sever & Merkine 1988). Fortunately, S1(X, ω1) does not have to be calculated to
capture the basic physics of the normal mode instabilities; the leading-order WKB
solution is adequate.

Pierrehumbert (1984) noted, within the context of baroclinic instability, that a
conceptual picture of the normal mode instabilities can be formed from the perspective
of absolute instability, whereby a branch point is associated with a wave source.
This picture, which carries over to the barotropic forced wave problem considered
here, hinges on the following. Emanating from a branch point are two waves, each
associated with a different branch of the dispersion relation (5.4). One branch, kR

0 , is
associated with a wave that propagates to the right and vanishes as Xr → ∞. The
other branch, kL

0 , is associated with a wave that propagates to the left and vanishes
as Xr → −∞. This conceptual picture is consistent with figure 5, where a divergent
group velocity field exists at the branch point.

5.1.2. Convective growth

To determine regions of convective growth, we check each point in X for a ray with
real wavenumber along which a travelling wave has positive growth rate. If such a
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Figure 6. Numerically determined growth rate as a function of δ. �, values for the oscillatory
mode in figure 5(a); ×, values for the envelope mode in figure 5(b). The horizontal line denotes
the leading-order WKB estimate of the growth rate. Note that the growth rates for both the
oscillatory and envelope modes asymptote to the WKB estimate as δ → 0.

point exists and the flow is absolutely stable there, we label that point in the flow as
convectively unstable.

We define a ray at the position, Xc, moving at the speed, V , such that cg(Xc) = V .
From (5.5) we see that mp < cg for real, non-zero wavenumber, defined by k0(Xc) =

±
√

(mp − V )/3md . Using this expression for k0(Xc), the dispersion relation (5.4) yields
the frequency for the wave propagating along the ray:

ω0(Xc) = 1
3
k0(Xc)[2mp + V ] − img. (5.13)

Because k0(Xc) is real, (5.13) shows that the spatial distribution of convective growth
follows the spatial distribution of mg(X) = r + m̃g(X). For the idealized stationary
waves of § 4, which are symmetric about X = 0, an incoming wavetrain convectively
grows where mg < 0 and convectively decays where mg > 0.

Gaster (1962) has shown that in the limit of weak growth rate the local convective
growth can be interpreted as either local temporal growth or as local spatial growth,
with the respective growth rates related by the Gaster transformation ω0i ≈ −k0icgr .
We have verified that this transformation holds for the convectively unstable waves
in this model. The transformation does not hold for the absolute instabilities because
cg = 0 at the branch point. Using the Gaster transformation, the net convective
growth, G, of a wavetrain propagating in from infinity is given at a position, X, by

G(X) = exp

(
−1

δ

∫ X

−∞
k0i dX′

)
≈ exp

(
1

δ

∫ X

−∞

ω0i

cgr

dX′
)

. (5.14)

Equation (5.14) shows that slowly propagating wavetrains undergo the largest
convective growth. Because ω0i = −mg , the structure of the stationary wave, as
manifest through its meridional wind distribution, strongly influences the resulting
convective growth. The degree of asymmetry of the stationary wave about X = 0
determines the amount of energy an incoming wavetrain gains or loses upon exiting
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Figure 7. An example of (a) upstream and (b) downstream convective growth in a flow
that is free of absolutely instability. The parameters are: (a) δ = 0.2, Np = 2δ, Ng = 0.4;
(b) Ng = −0.4.

the stationary wave region. Ekman damping (r 	= 0) introduces an asymmetry in mg ,
leading to a net loss of energy as a wavetrain propagates through the stationary wave
region.

Depending on the type of streamwise boundary condition that is imposed, the
convective growth induced by an asymmetric stationary wave may exhibit distinct
differences. For example, radiation boundary conditions will lead to a finite amount
of convective growth as the wave traverses the stationary wave region (see (5.14)).
In contrast, periodic boundary conditions will lead to continual convective growth
as the wave periodically enters and exits the stationary wave region. Because the
absolute instabilities are non-propagating and strongly localized, only convective
growth regions can lead to instabilities that require the periodic recycling of energy
(e.g. Pierrehumbert 1984).

Figure 7 shows an example of upstream and downstream convective growth in
a flow that is free of absolutely instability. The parameters are: δ = 0.2, Np = 2,
Ng = ±0.4. In the upstream far field, we introduce an eastward propagating wave
train with ω0 = 1. As the wave train propagates through the stationary wave, local
growth (decay) occurs where mg(X) < 0 (mg(X) > 0).
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5.2. Regional distribution of absolute instability and convective growth

In this sub-section we provide a geometric interpretation of the closely related spatial
and temporal instability theories in order to determine the regional distribution of
absolute instability and convective growth.

Temporal branches are associated with complex frequency and real wavenumber,
whereas spatial branches are associated with complex wavenumber and real frequency
(Huerre & Rossi 1998 and references therein). Consider the algebraic dispersion
relation D(k0, ω0; X) = 0 given by (5.4). When (5.4) is evaluated for real wavenumber
k0, there is a single complex frequency ω0 that corresponds to temporal instability
for ω0i = −mg > 0. When (5.4) is evaluated for real frequency, there are three
wavenumber solutions, each corresponding to a different spatial branch. Although
one or more of these branches may appear to exhibit spatial growth (i.e. for an
eastward moving wave −ki > 0), this growth may in fact be spurious (e.g. Briggs
1964). To formally determine the physically relevant spatial growth, the initial-value
problem must be solved. The initial-value approach is in principle straightforward,
but in practice technically difficult. Fortunately, based on early work by Briggs (1964),
among others, Pierrehumbert (1986) and Huerre & Rossi (1998) have shown that by
examining the geometry of the spatial branches, the regions of absolute instability
and convective growth can easily be determined. The geometric approach hinges on
examining, for real frequency, the variations of the (complex) spatial branches with
variations in a control parameter, say, X. If a branch crosses the ki = 0 axis but
does not pinch with another branch, the flow is convectively unstable. On the other
hand, if a branch crosses the ki = 0 axis and pinches with another branch, the flow
is absolutely unstable. Figure 8 shows the geometry of the spatial branches for four
different values of X (the control parameter) for the stationary wave that supports the
oscillatory mode shown in figure 3. For each X, the branches were obtained by varying
the frequency. Figure 8(a) shows, for X = −∞, where the flow is zonally uniform,
the branch geometry for neutral flow – no roots cross the ki = 0 axis. In figure 8(b),
where X = −6.3, the middle branch approaches but does not pinch with the lower
branch, which is indicative of convective growth. In figure 8(c), where X = −6.1,
the branch that approached the lower branch in figure 8(b) has pinched with the
lower branch to form two lower branches. This branch geometry is associated with
absolute instability. It is important to note that in figures 8(b) and 8(c) the branch
which is immediately below the ki = 0 axis never crosses the ki = 0 axis, which means
there is no long or short wave cutoff; all real wavenumbers have positive temporal
growth rate, as verified by (5.13). Figure 8(d) shows, for X = 0, the geometry of the
branches for the transition from absolute growth to absolute decay. For this branch
geometry, the flow is neutral. Because the stationary wave that we are considering is
symmetric about X = 0, in the region X > 0 the branches in figures 8(a)–8(c) are
merely mirrored about the ki = 0 axis. This mirroring means that the approaching
and/or pinching of the branches occurs above the ki = 0 axis. Thus in the X > 0
region, the geometry of the spatial branches can be shown to correspond to spatial
decay and thus temporal decay; the flow is stable for X > 0.

Applying the aforementioned procedure to determine the regional branch
geometries of the four stationary waves above produces figure 9. Figure 9(a) (figure 9b)
is for the stationary wave that contains an absolutely unstable region that would give
rise to an oscillatory (envelope) mode. For the oscillatory (envelope) mode, the
branch point is upstream (downstream) of the stationary wave centre. This is the
key difference between the oscillatory and envelope modes. The wave source region
(i.e. branch point) for the oscillatory mode emits a downstream branch that must
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Figure 8. The geometry of the spatial branches for four different values of X for the
stationary wave that supports the oscillatory mode shown in figure 5.

propagate through a region of absolute instability and then immediately into a region
of stability. In contrast, the wave source region for the envelope mode emits a
downstream branch that remains in the absolutely unstable region for only a short
time before it enters the convectively unstable region.

Figures 9(c) and 9(d) show the distribution of stability properties for stationary
waves that are convectively unstable but free of absolute instability. Because the
convective growth regions are on opposite sides of the stationary wave fields depicted
in figures 9(c) and 9(d), the local growth characteristics are quite different. In
figure 9(c) (figure 9d) an incoming wavetrain grows (decays) as it propagates into the
upstream side of the stationary wave field and decays (grows) as it propagates out
of the downstream side. In both cases, the wavetrain returns to its initial amplitude
because the stationary wave field is symmetric about X = 0.

6. Concluding remarks
The role of topography and potential vorticity sources in controlling the local linear

stability of stationary long waves to long low-frequency (LF) Rossby waves has been
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Figure 9. The regional distribution of absolute instability (A) and convective growth (C) for
four different stationary waves. S indicates stable. The vertical solid lines denote the boundaries
separating the various stability regions. Plots (a, b) show the stationary wave that contains
an absolutely unstable region that would give rise to (a) an oscillatory and (b) an envelope
mode. Plots (c, d) show an incoming wave train that (c) grows and (d) decays as it propagates
into the upstream side of the stationary wave field and decays (grows) as it propagates out
of the downstream side. Also shown in each figure is the curve of maximum temporal growth
rate. The dashed line denotes the location of the branch point.

examined using a quasi-geostrophic barotropic model. By drawing on conservation
principles derived from Hamiltonian theory, numerical results obtained from a set
of systematically derived LF flow equations, and a local WKB analysis of absolute
instability and convective growth, we have derived explicit stability criteria and
constraints on the LF structures that can develop on stationary long waves.

The LF evolution equation (2.8) pivots on a background flow which, in the absence
of stationary waves, is stable according to the classic Rayleigh criterion. Although the
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O(1) parallel background flow is ‘Rayleigh stable’, we show that it satisfies a necessary
condition for instability that is related to Arnol’d’s (1965) second theorem for the
stability of plane curvilinear flow. We resolve this apparent paradox by showing that
any amount of zonal variation in the background flow may render the flow unstable
to long LF waves with stationary meridional wavenumber.

Explicit knowledge of the forcing that produces the stationary waves is shown to
be crucial to predicting a unique LF field. Specific examples are given where various
topographies or external potential vorticity (PV) sources can be chosen that produce
stationary waves that differ by asymptotically small amounts, yet the LF instabilities
that emerge may manifest themselves in strikingly different ways. If the stationary
wave field is forced solely by topography, LF streamwise oriented wave trains always
emerge. In contrast, if the stationary wave field is forced solely by PV, two LF
structures are possible: streamwise elongated envelope modes or streamwise oriented
wavetrains. To our knowledge, the development of the envelope modes is new, and
represents a novel means for generating coherent structures within the context of a
linear LF theory.

The LF dynamics of the model are shown to be Hamiltonian for any topographic
forcing and for PV forcing having special structure. For such forcing, conservation
laws for pseudoenergy, pseudomomentum and ‘mass’ are derived that yield necessary
conditions for instability and constraints on the allowable LF structures that can
develop on forced stationary waves. We show, for example, that Hamiltonian LF
instabilities cannot arise from time variations in the background flow alone, but
require streamwise variations in the background flow. When the Hamiltonian LF
instabilities do arise, they must have zero-mean in the streamwise direction.

Analysis of the absolute and convective instability properties of the flow allows us
to predict the type and location of the low-frequency structures that can develop on
stationary waves. The problem hinges on identifying, via a WKB analysis, the locations
of the complex branch points of the flow, which anchor the absolute instability. If
the absolute instability region is on the upstream side of the stationary wave field,
LF, streamwise oriented wavetrains emerge. If the absolute instability region is on the
downstream side of the stationary wave field, LF, envelope (non-oscillatory) modes
emerge.

For flows that are free of absolute instabilities, LF wavetrains originating in the
zonally uniform far field can locally amplify via convective growth induced by the
streamwise variations of the stationary wave. If the flow is inviscid and the stationary
wave is symmetric about a longitude, the wavetrain exits the stationary wave region
with the same amplitude that it had when it entered the region. If the flow is viscous
and/or the stationary wave is asymmetric, then a wavetrain entering the stationary
wave region will exit the region with different amplitude. Factors that can produce
asymmetry in the stationary wave include (i) a symmetric PV source or asymmetric
topography, (ii) a non-zonal jet axis produced by non-zonal forcing structures and
(iii) a combination of PV sources and topography.

The successful simulation of atmospheric LF variability will depend in part on the
accurate depiction of the location of the energy source for the LF instability, a point
that has also been noted by Merkine (1982). In addition, we have shown here that
the instability and structure of the LF wave will depend on an extremely fine-scale
feature – the complex branch point derived from the WKB analysis. Moreover,
the amplitude of the LF wave has been shown to be controlled by the meridional
wind distribution of the underlying stationary wave. For rapidly growing modes, the
branch point must be co-located with the maximum in the temporal growth rate.
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Thus, successful simulation of atmospheric LF variability will depend on the accurate
representation of the structure of the stationary wave, and consequently on the forcing
from which the stationary wave originated.

The theory developed here should have applicability to a broad-range of
atmospheric and oceanic phenomena characterized by long LF features. For example,
the LF structures that develop on the stationary wave fields analysed here are
reminiscent of the low-frequency structures observed by Kushnir & Wallace (1989)
in the northern hemisphere troposphere during winter. They show slowly modulated
wavetrains over the broad continental landmasses and zonally elongated features
over the oceans (see their figures 5 and 8). Their ‘continental modes’ are similar to
the oscillatory modes that emerge from the topographically forced stationary waves,
while their ‘oceanic modes’ are similar to the envelope modes that emerge from the
PV forced stationary waves. Although Kushnir & Wallace suggest that both mode
types are consistent with remote forcing from the tropics, our theory provides an
alternative explanation for the generation of continental and oceanic modes.

Part 2 to this study will address the nonlinear dynamics of the oscillatory and
envelope modes discovered here. There are good reasons to believe that these two
distinct modes will equilibrate in fundamentally different ways. For example, for
topographic stationary waves, for which the flow is Hamiltonian, ‘mass’ is conserved
irrespective of disturbance amplitude, meaning the disturbances that emerge must
have zero zonal-mean. Thus, the oscillatory modes will not alter the zonal-mean flow.
In contrast, because the PV stationary waves do not conserve ‘mass’, alterations to
the zonal-mean flow can be expected, even in regions far-removed from the external
PV forcing. Moreover, to what extent the linear structures obtained here preserve
their integrity at finite-amplitude remains to be seen.
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as well as two anonymous reviewers, for their insightful comments on several aspects
of this work. D. H. was supported by a Rosenstiel Postdoctoral Fellowship from
the University of Miami. T. N. was supported in part by NASA grant LWS04-0025-
0108.

Appendix A. Definition of the coefficients in (2.8)
The forcing in (2.4a) is obtained by combining the O(ε) and O(ε2) zonal-mean

balances:

F̄r (y, T ) = [−Ū1y(y, 0) − Λ0(ψ̄1(y, 0) − [Ū1(−1, T ) − Ū1(−1, 0)](y + 1))]e−rT

+ e−rT

∫ T

0

F̄2

Ū0

erτ dτ +

∫ y

−1

e−rT

(∫ y

−1

∫ T

0

F̄2

Ū0

erτ dτ dy ′
)

dy, (A 1)

where ψ̄1(y, 0) is the initial zonal-mean structure, Ū1(−1, 0) is the initial boundary
zonal wind, and Ū1(−1, T ) is the boundary zonal wind at time T .

The coefficients and inhomogeneous forcing term in (2.8) are partitioned into
zonally uniform (overbar) and zonally varying (tilde) parts:

m̄d =
1

R

∫ 1

−1

ϕ2 dy, (A 2a)

m̄n =
1

R

∫ 1

−1

Λ0y

ϕ3

Ū0

dy (A 2b)
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m̄p(T ) =
1

R

∫ 1

−1

[Λ0Ū1 + Q̄1y]
ϕ2

Ū0

dy, (A 3a)

m̃p(X, T ) =
1

R

∫ 1

−1

[Λ0Ũ1 + Q̃1y]
ϕ2

Ū0

dy (A 3b)

m̃g(X, T ) =
1

R

∫ 1

−1

[Ṽ1(Λ0ϕ)y − Q̃1Xϕy]
ϕ

Ū0

dy, (A 4)

f̃ (X, T ) = − 1

R

∫ 1

−1

[Q̃1T + J (ψ̄1 + ψ̃1, Q̄1 + Q̃1) − Ū0Q̃2X + F̃ 2]
ϕ

Ū0

dy, (A 5)

where

R = −
∫ 1

−1

Q̄0y

Ū 2
0

ϕ2 dy. (A 6)

Equation (A6) is the Rayleigh inflection point integral in the long-wave and low-
frequency limit. Because we are considering O(1) zonal-mean flows for which the
O(1) potential vorticity gradient is positive, R < 0.

In (A2)–(A5), the background PV gradients are given by

Q̄1y(y, T ) = −Ū1yy, (A 7)

Q̃1y(X, y, T ) = −(Ũ1yy − h1y), (A 8)

Q̃1X(X, y, T ) = Ṽ1yy + h1X, (A 9)

Q̃2X(X, y, T ) = Ṽ1XX + h2X, (A 10)

where the subscripts 1 and 2 denote O(ε) and O(ε2) quantities, respectively.

Appendix B. Dynamics of non-Hamiltonian flows
For arbitrary, time-independent stationary waves the equations for pseudoenergy,

pseudomomentum and mass contain sources and sinks, i.e.

ET =

∫ ∞

−∞

(
dmp

dX
− mg

)
[mpA2 + mdAAXX] dX, (B 1a)

PT =

∫ ∞

−∞

(
dmp

dX
− 2mg

)
A2 dX, (B 1b)

JT =

∫ ∞

−∞

(
dmp

dX
− mg

)
A dX. (B 1c)

Equation (B1b) shows that stationary wave fields satisfying

dmp

dX
− 2mg = 0 (B 2)

are stable. Equation (B2), which defines the neutral stability curve in figure 2, is
satisfied only for stationary waves forced by PV.

Equation (B1c) shows that for non-Hamiltonian stationary waves, (3.2) is not
satisfied. Consequently, the disturbance has non-zero zonal-mean, meaning that
envelope modes may emerge (see the numerical results in § 4 and the WKB results
in § 5). Assuming A > 0, growth of the disturbance amplitude A will depend strongly
on the extent to which it projects onto the region where (dmp/dX − mg) > 0. Thus,
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significant growth can be anticipated if the structure of A is similar to the structure
of dmp/dX − mg . Because the envelope modes will generally project more strongly
onto the structure of the growth region than the oscillatory modes, it follows that the
envelope modes will generally have larger growth rates.

Appendix C. Pseudoenergy and Arnol’d’s second theorem
The pseudoenergy-derived stability condition obtained in § 3 can be related to

Arnol’d’s (1965) stability theorem for plane curvilinear flow (a lucid exposition of
Arnol’d’s theorem can also be found in Pedlosky 1987, § 7.17). Below we prove two
corollaries: (i) there is a simple relationship between the coefficient mp in (2.8) and
the refractive index Λ of the background flow; (ii) the invariant of Arnol’d’s (1965)
second theorem reduces here to the pseudoenergy constraint obtained in § 3.

The first corollary may be proved by appealing to the definition of the refractive
index:

Λ =
∂Q

∂Ψ
=

V Qx − UQy

U 2 + V 2
, (C 1)

where Ψ , Q, U and V , represent, respectively, the background streamfunction,
potential vorticity, and zonal and meridional wind fields. We begin by expanding
(C 1) in an asymptotic series in ε,

Λ = Λ0 + εΛ1 + · · · (C 2)

and use (2.1) to obtain

Λ0 = −Q̄0y

Ū0

, (C 3a)

Λ1 = −
[
Ū1 + Ũ1 +

Q̄1y + Q̃1y

Q̄0y

Ū0

]
Λ̄0

Ū0

. (C 3b)

Equation (C 3b) allows mp to be written as

mp = − 1

R

∫ 1

−1

Λ1ϕ
2dy (C 4)

Because we have shown that a change in sign of mp is a necessary condition for
instability, (C 4) shows that this is equivalent to a change in sign of Λ1. Because
R < 0, stability is assured when Λ1 � 0.

To prove the second corollary, we must relate (C 4) to Arnol’d’s (1965) second
theorem. We start from the Arnol’d invariant, which for the present model takes the
form

d

dt

∫ ∞

−∞

∫ 1

−1

[
E +

ζ 2

2Λ

]
dx dy = 0, (C 5)

where E = (φ̃2
x + φ̃2

y)/2 is the kinetic energy, ζ = φ̃xx + φ̃yy is the relative vorticity, and

φ̃ = φ̃(x, y, t) is the disturbance streamfunction. Equation (C 5) shows that a sufficient
condition for stability is Λ > 0; therefore a necessary condition for instability is Λ < 0.

Recall from § 2, our O(1) background flow is such that Ū0 > 0 and Q0y � 0; it
follows that Λ0 < 0. Therefore, the O(1) parallel background flow is stable according
to the Rayleigh criterion; yet the same parallel background flow satisfies a necessary
condition for instability according to Arnol’d’s second theorem. We show below
that the zonal variation in the background flow (which is neglected by the Rayleigh
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criterion) may render the flow unstable to long zonal waves with stationary meridional
wavenumber.

Because we are focusing on long low-frequency waves, we impose a long x-scale on
the disturbance field such that ∂/∂x → ε1/2∂/∂X, insert (C 2) into (C 5), and balance
like orders in ε. The lowest-order balance yields

d

dt

∫ ∞

−∞

∫ 1

−1

[
φ̃2

y +
φ̃2

yy

Λ0

]
dX dy = 0, (C 6)

which shows that this integral must vanish for instability. This integral will vanish for
waves with stationary meridional wavenumber, i.e. Λ

1/2
0 . This can be shown by using

(2.7) in (C 6) and integrating by parts. Hence, O(1) zonal flows for which Q0y � 0 and
Λ0 < 0 are marginally stable to long waves with stationary meridional wavenumber.
Because this flow is marginally stable, rather than deeply stable, an O(ε) change to
the flow may lead to instability. Hence, Rayleigh’s criterion is not broadly applicable
to geophysical flows with any amount of zonal variation.

At the next order, we obtain

d

dt

∫ ∞

−∞

∫ 1

−1

[
1

2
φ̃2

X +
φ̃yy

Λ0

φXX − 1

2

φ̃2
yy

Λ2
0

Λ1

]
dX dy = 0. (C 7)

Using (2.7) in (C 7) and integrating by parts allows (C 7) to be written as

d

dt

∫ ∞

−∞

∫ 1

−1

[
Λ1φ̃

2 + φ̃2
X

]
dX dy = 0. (C 8)

Thus, in agreement with analysis of mp given above, instability requires that Λ1

change sign; stability is assured when Λ1 � 0. Agreement between (C 8) and the
Hamiltonian definition (3.3) can be shown by using φ̃ = A(X, T )ϕ(y) in (C 8). Thus,
flows that satisfy the Rayleigh criterion for stability may be rendered unstable by the
addition of O(ε) non-parallel flow, and this instability will take the form of a long
wave with stationary meridional wavenumber.
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